4.1 Exercises
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-{{:4.1 - Figur - Tvättlina med kavaj på galge}} +{{:4.1 - Figure - A washing line with a jacket on a hanger}})) |
|||
(20 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[4.1 Angles and circles|Theory]]}} |
- | {{ | + | {{Selected tab|[[4.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 4.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Write in degrees and radians | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math>\displaystyle \frac{1}{4} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{1}{4} \textrm{ revolution} </math> |
|b) | |b) | ||
- | |width="50%" | <math>\displaystyle \frac{3}{8} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{3}{8} \textrm{ revolution}</math> |
|- | |- | ||
|c) | |c) | ||
- | |width="50%" | <math>-\displaystyle \frac{2}{3}\textrm{ | + | |width="50%" | <math>-\displaystyle \frac{2}{3}\textrm{ revolution}</math> |
|d) | |d) | ||
- | |width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ | + | |width="50%" | <math>\displaystyle \frac{97}{12} \textrm{ revolution} </math> |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:1|Solution |Solution 4.1:1}} |
- | === | + | ===Exrecise 4.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Transform to radians | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 36: | Line 36: | ||
|width="25%" | <math>270^\circ</math> | |width="25%" | <math>270^\circ</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:2|Solution |Solution 4.1:2}} |
- | === | + | ===Exercise 4.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the length of the side marked <math>\,x\,\mbox{.}</math> | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
|width="33%" | | |width="33%" | | ||
- | {{:4.1 - | + | {{:4.1 - Figure - A right-angled triangle with sides 30, 40 and x}} |
|b) | |b) | ||
- | |width="33%" | {{:4.1 - | + | |width="33%" | {{:4.1 - Figure - A right-angled triangle with sides 12, x and 13}} |
|c) | |c) | ||
- | |width="33%" | {{:4.1 - | + | |width="33%" | {{:4.1 - Figure - A right-angled triangle with sides 8, x and 17}} |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:3|Solution a|Solution 4.1:3a|Solution b|Solution 4.1:3b|Solution c|Solution 4.1:3c}} |
- | === | + | ===Exercise 4.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | | + | |width="100%" | Determine the distance between the points (1,1) and (5,4). |
|- | |- | ||
|b) | |b) | ||
- | |width="100%" | | + | |width="100%" | Determine the distance between the points(-2,5) and (3,-1). |
|- | |- | ||
|c) | |c) | ||
- | |width="100%" | | + | |width="100%" | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:4|Solution a|Solution 4.1:4a|Solution b|Solution 4.1:4b|Solution c|Solution 4.1:4c}} |
- | === | + | ===Exercise 4.1:5=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | | + | |width="100%" | Determine the equation of a circle having its centre at (1,2) and radius 2. |
|- | |- | ||
|b) | |b) | ||
- | |width="100%" | | + | |width="100%" | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:5|Solution a|Solution 4.1:5a|Solution b|Solution 4.1:5b}} |
- | === | + | ===Exercise 4.1:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Sketch the following circles | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 89: | Line 89: | ||
|width="50%" | <math>(3x-1)^2+(3y+7)^2=10</math> | |width="50%" | <math>(3x-1)^2+(3y+7)^2=10</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:6|Solution a|Solution 4.1:6a|Solution b|Solution 4.1:6b|Solution c|Solution 4.1:6c}} |
- | === | + | ===Exercise 4.1:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Sketch the following circles | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 103: | Line 103: | ||
|width="50%" | <math>x^2-2x+y^2+6y=-3</math> | |width="50%" | <math>x^2-2x+y^2+6y=-3</math> | ||
|d) | |d) | ||
- | |width="50%" | <math>x^2-2x+y^2+ | + | |width="50%" | <math>x^2-2x+y^2+2y=-2</math> |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:7|Solution a|Solution 4.1:7a|Solution b|Solution 4.1:7b|Solution c|Solution 4.1:7c|Solution d|Solution 4.1:7d}} |
- | === | + | ===Exercise 4.1:8=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | How many revolutions does a wheel of radius 50 cm make when it rolls 10m? | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:8|Solution|Solution 4.1:8}} |
- | === | + | ===Exercise 4.1:9=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds? | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:9|Solution|Solution 4.1:9}} |
- | === | + | ===Exercise 4.1:10=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a | |
+ | hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the | ||
+ | lower attachement point the hanger is hanging. (That is, the distance <math>\,x\,</math> in the figure). | ||
+ | |||
- | <center> {{:4.1 - | + | <center> {{:4.1 - Figure - A washing line with a jacket on a hanger}} </center> |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.1:10|Solution|Solution 4.1:10}} |
Current revision
Theory | Exercises |
Exercise 4.1:1
Write in degrees and radians
a) | | b) | |
c) | | d) | |
Exrecise 4.1:2
Transform to radians
a) | ![]() | b) | ![]() | c) | ![]() | d) | ![]() |
Exercise 4.1:3
Determine the length of the side marked
a) |
| b) |
| c) |
|
Answer | Solution a | Solution b | Solution c
Exercise 4.1:4
a) | Determine the distance between the points (1,1) and (5,4). |
b) | Determine the distance between the points(-2,5) and (3,-1). |
c) | Find the point on the x-axis which lies as far from the point (3,3) as from (5,1). |
Answer | Solution a | Solution b | Solution c
Exercise 4.1:5
a) | Determine the equation of a circle having its centre at (1,2) and radius 2. |
b) | Determine the equation of a circle having its centre at (2,-1) and which contains the point (-1,1). |
Exercise 4.1:6
Sketch the following circles
a) | | b) | |
c) | |
Answer | Solution a | Solution b | Solution c
Exercise 4.1:7
Sketch the following circles
a) | | b) | |
c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 4.1:8
How many revolutions does a wheel of radius 50 cm make when it rolls 10m?
Exercise 4.1:9
On a clock, the second hand is 8 cm long. How large an area does it sweep through in 10 seconds?
Exercise 4.1:10
A washing line of length 5.4 m hangs between two vertical trees that are at a distance of 4.8 m from each other. One end of the line is fixed 0.6 m higher than the other, and a jacket hangs from a
hanger 1.2 m from the tree where the line has its lower point of attachment. Determine how far below the
lower attachement point the hanger is hanging. (That is, the distance