15. Momentum and impulse
From Mechanics
Theory | Exercises |
Key Points
Momentum is defined as the product of the mass and velocity of a body.
Momentum =
If the velocity of a body, of mass
Change in momentum or impulse =
We often use
The relationships
Find the momentum of a car, of mass 1.2 tonnes, travelling in a straight line
at 30
Solution
Note that 1.2 tonnes is 1200 kg. Using Momentum = mv gives:
30=36000 Ns
A car, of mass 1.1 tonnes, which was initially travelling at 6
Solution
First find the impulse (change in momentum).
0−1100
6=−6600 Ns
Use the formula
2.2F=−3000 N
The average force has magnitude 3000 N
The speed of a car, travelling in a straight line, is reduced from 20
Solution
First find the impulse (change in momentum).
15−1200
20=−6000 Ns
Use the formula
20F=−300 N
A ball has a mass of 200 grams. It initially travels horizontally at 10
Solution
The diagrams show the initial and final velocities of the ball and the unit vectors
10i=2i Ns
i+16sin60
j)=3.2cos60
i+3.2sin60
j Ns
\displaystyle \begin{align} & \text{Change of Momentum }=m\mathbf{v}-m\mathbf{u} \\ & =3\textrm{.}2\cos 60{}^\circ \mathbf{i}+3\textrm{.}2\sin 60{}^\circ \mathbf{j}-2\mathbf{i} \\ & =-0\textrm{.}4\mathbf{i}+2\textrm{.}77\mathbf{j} \text{ Ns} \end{align}
A ball is travelling horizontally at 8 \displaystyle \text{m}{{\text{s}}^{-1}}, when it is hit. After being hit it initially travels upwards at 6 \displaystyle \text{m}{{\text{s}}^{-1}}. The mass of the ball is 300 grams. Find the magnitude and direction of the impulse on the ball.
Solution
The diagrams show the initial and final velocities of the ball and the unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.
\displaystyle \begin{align} & \text{Initial Momentum }=\text{ }m\mathbf{u} \\ & =0\textrm{.}3\times 8\mathbf{i} \\ & =2\textrm{.}4\mathbf{i} \end{align}
\displaystyle \begin{align} & \text{Final Momentum }=m\mathbf{v} \\ & =0\textrm{.}3\times 6\mathbf{j} \\ & =1\textrm{.}8\mathbf{j} \end{align}
\displaystyle \begin{align} & \text{Impulse }=m\mathbf{v}-m\mathbf{u} \\ & =1\textrm{.}8\mathbf{j}-2\textrm{.}4\mathbf{i} \end{align}
The diagram shows the impulse.
The magnitude of the impulse, \displaystyle I, is found using Pythagoras:
\displaystyle I=\sqrt{{{1\textrm{.}8}^{2}}+{{2\textrm{.}4}^{2}}}=3\text{ Ns}
The angle, \displaystyle \alpha , can be found using trigonometry: