4. Forces and vectors
From Mechanics
Theory | Exercises |
Key Points
The force
i+Fcos(90−
)j=Fcos
i+Fsin
j
If
The figure shows
and also how to calculate the angles
=VH
Note
This equation has infinitely many solutions as if
180
In this course it is assumed the solution chosen is between
180
Express each of the forces given below in the form a
a)
b)
Solution
a) i+20sin40
j N
b) i+80sin30
j N
Note the negative sign here in the first term.
Express the force shown below as a vector in terms of
Solution
i−28sin30
j N
Note the negative sign in the second term.
Express the force shown below as a vector in terms of
Solution
i−50sin44
j N
Note that here both terms are negative.
Find the magnitude of the force (4
Solution
The magnitude, \displaystyle F , of the force is given by,
\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8\textrm{.}94\text{ N (to 3sf)}
The angle, \displaystyle \theta , is given by,
\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63\textrm{.}4{}^\circ
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Solution
Force | Vector Form (N) |
20 N | \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j} |
18 N | \displaystyle -18\mathbf{j} |
25 N | \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j} |
15 N | \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j} |
\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+ \\ & \left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j}=-23.627\mathbf{i}-3.730\mathbf{j} \text{ N} \end{align}
The magnitude is given by:
\displaystyle \sqrt{{{23\textrm{.}627}^{2}}+{{3\textrm{.}730}^{2}}}=23\textrm{.}9\text{ N (to 3sf)}
The angle \displaystyle \theta can be found using tan.
\displaystyle \begin{align} & \tan \theta =\frac{3\textrm{.}730}{23\textrm{.}627} \\ & \theta =9\textrm{.}0{}^\circ \end{align}