7. Position Vectors
From Mechanics
Theory | Exercises |
Key Points
Velocities of particles can be expressed as vectors,
i+Vsin
j
A particle when moving with a constant velocity
where
If
and
where c
p
q
then this equation may be rewritten as
bt+p
i+
ct+q
j
This is another way of writing the equation for a particle with constant velocity.
Two children, A and B, start at the origin and run so that their position vectors in metres at time
Plot the paths of the two children for
t
4
Solution
The tables below show the positions in metres of the children at 1 second intervals for
t
4
Time | Position of A ( | Position of B ( |
0 | | ![]() |
1 | | ![]() |
2 | ![]() | |
3 | ![]() | |
4 | ![]() |
From the values that we have obtained it is clear that the two children will have the same position when
A boat moves so that at time t its position vector is r, where
and
a) Find the time when the boat is due east of the origin.
b) Find the time when it is due south of the origin.
c) Find the position of the boat when it is south east of the origin.
Solution
a) When the boat is due east of the origin the position vector will contain only
\displaystyle \begin{align} & 5t-450=0 \\ & t=\frac{450}{5}=90\text{ s} \\ \end{align}
b) When the boat is due south of the origin the position vector will contain only \displaystyle \mathbf{j} terms and no \displaystyle \mathbf{i} terms.
\displaystyle \begin{align} & 9t-180=0 \\ & t=\frac{180}{9}=20\text{ s} \\ \end{align}
c) When the boat is south east of the origin, its position vector will be of the form \displaystyle k\mathbf{i}-k\mathbf{j} .
\displaystyle \begin{align} & -(9t-180)=5t-450 \\ & -9t+180=5t-450 \\ & 630=14t \\ & t=\frac{630}{14}=45\text{ s} \\ \end{align}