19. Motion with variable acceleration II
From Mechanics
Theory | Exercises |
Key Points
Scalar form | Vector form |
![]() | ![]() |
![]() | ![]() |
| |
| |
|
Don't forget to evaluate constants of integration.
The acceleration,
This model is valid for
t
80
Solution
First integrate the acceleration to obtain the velocity.
4−t20
dt=4t−40t 2+c1
To find the value of the constant
The displacement of the particle can be found by integrating the velocity:
4t−40t 2
dt=2t 2−t 3120+c2
To find the constant
To find the distance travelled substitute
802−803120=8530 m (to 3sf)
A boat has an initial velocity of
a) Find the velocity of the boat at time \displaystyle t.
b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0.
Solution
a) Integrate the acceleration to obtain the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\frac{3}{10}dt\ \mathbf{i}+\int{\left( \frac{t}{50} \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} \end{align}
When \displaystyle t=0,
\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
b) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\ \mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\ \mathbf{j} \\ & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} \end{align}
The boat is initially at the origin, so when \displaystyle t=0, the boat has position vector \displaystyle 0\mathbf{i}+0\mathbf{j}. Substituting these values gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is:
\displaystyle \mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}
Substituting \displaystyle t=\text{12}0 , gives the required position vector.
\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}
At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\ \mathbf{i}-400t\ \mathbf{j} \right)N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the acceleration at time \displaystyle t.
b) Find the velocity of the particle at time \displaystyle t.
c) Find the position vector of the particle at time \displaystyle t.
Solution
a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:
\displaystyle \begin{align} & 300t\ \mathbf{i}-400t\ \mathbf{j}=250\mathbf{a} \\ & \mathbf{a}=\frac{6}{5}t\ \mathbf{i}-\frac{8}{5}t\ \mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\ \end{align}
b) Integrating the acceleration gives the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\ \mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\ \mathbf{j}}} \\ & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} \end{align}
As the initial velocity is \displaystyle 2\mathbf{i}-3\mathbf{j}, this can be used with \displaystyle t=0, to show that \displaystyle {{c}_{1}}=2 and \displaystyle {{c}_{2}}=-3. Hence the velocity is given by
\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
c) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\ \mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\ \mathbf{j} \\ & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} \end{align}
Note that the particle is initially at the origin. So using \displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j} when \displaystyle t=0, gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is given by:
\displaystyle \mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}