Processing Math: Done
Solution 8.6b
From Mechanics
(Difference between revisions)
Line 1: | Line 1: | ||
- | We | + | We assume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math> |
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>. | The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>. | ||
Line 8: | Line 8: | ||
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math> | <math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math> | ||
- | <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i} | + | <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-50\mathbf{j}</math> |
The next stage has | The next stage has | ||
Line 16: | Line 16: | ||
Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get | Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get | ||
- | <math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+35\mathbf{i} | + | <math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-50\mathbf{j})=275\mathbf{i}-355\mathbf{j}</math> |
+ | |||
+ | This is the boat´s final position. | ||
+ | |||
+ | The distance from the starting point is the magnitude of this vector, | ||
+ | |||
+ | |||
+ | <math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=450\ \text{m}</math> |
Revision as of 19:42, 15 April 2010
We assume the starting point is the origin. This means
The boat first accelerates to a point
Using
10+21(0.5i−j)
10 2+0=35i−50j
The next stage has
Using once again
40+0+(35i−50j)=275i−355j
This is the boat´s final position.
The distance from the starting point is the magnitude of this vector,
2752+
−355
2=450 m