Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.8

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: Consider a particle on the surface of the planet. <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math> where <math>F</math> is the gravitational force on a particle on the surface of t...)
Current revision (16:12, 3 February 2011) (edit) (undo)
 
Line 1: Line 1:
Consider a particle on the surface of the planet.
Consider a particle on the surface of the planet.
-
<math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math>
+
<math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\, 2}}}</math>
where
where
Line 21: Line 21:
-
<math>a=\frac{G{{m}_{1}}}{{{d}^{2}}}</math>
+
<math>a=\frac{G{{m}_{1}}}{{{d}^{\, 2}}}</math>
Thus
Thus
-
<math>{{d}^{2}}=\frac{G{{m}_{1}}}{a}</math>
+
<math>{{d}^{\, 2}}=\frac{G{{m}_{1}}}{a}</math>
As
As
Line 33: Line 33:
<math>\begin{align}
<math>\begin{align}
-
& {{d}^{2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\
+
& {{d}^{\, 2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\
& d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\
& d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\
\end{align}</math>
\end{align}</math>

Current revision

Consider a particle on the surface of the planet.

F=d2Gm1m2

where F is the gravitational force on a particle on the surface of the planet, in other words, its weight.

m1 is the mass of the planet, m2 is the mass of the particle and d is the radius of the planet.

As F=m2a where a is the acceleration of the particle very close to the surface of the planet,


a=d2Gm1

Thus

d2=aGm1

As G=6.671011 kg-1m3s-2 we get


d2=3.26.67101151020=3.233.35109=10.4109=1.041010d=1.04105=1.02105 m=102 km