Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 8.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: Here we use <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} </math> According to the text <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> We assume th...)
Current revision (12:31, 27 March 2011) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 1: Line 1:
-
Here we use
+
We assume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math>
-
<math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} </math>
+
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math>{{\mathbf{r}}_{A}}</math>.
-
According to the text
+
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> with,
-
<math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math>
+
<math>t=10</math>, <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> and from part a)
 +
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
 +
<math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-30\mathbf{j}</math>
-
We assume the starting point is the origin so that <math>{{\mathbf{r}}_{0}}=0</math>.
+
The next stage has
-
At <math>t=10+40=50</math> we obtain
+
<math>t=40</math>, <math>\mathbf{a}=0</math>, <math>{{\mathbf{r}}_{0}}=35\mathbf{i}-30\mathbf{j}</math>, and <math>\mathbf{u}=6\mathbf{i}-8\mathbf{j}</math> as the final position and velocity of the first stage is the initial position and velocity of the second stage.
 +
Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get
 +
<math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-30\mathbf{j})=275\mathbf{i}-350\mathbf{j}</math>
 +
This is the boat´s final position.
 +
The distance from the starting point is the magnitude of this vector,
-
The distance is the magnitude of this vector
+
 
 +
<math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=445\ \text{m}</math>

Current revision

We assume the starting point is the origin. This means r0=0

The boat first accelerates to a point A say. We first must calculate the position of this point rA.

Using r=ut+21at 2+r0 with,

t=10, u=i+2j and from part a) a=0.5ij ms2

rA=(i+2j)10+21(0.5ij)10 2+0=35i30j

The next stage has

t=40, a=0, r0=35i30j, and u=6i8j as the final position and velocity of the first stage is the initial position and velocity of the second stage.

Using once again r=ut+21at 2+r0 we get

r=(6i8j)40+0+(35i30j)=275i350j

This is the boat´s final position.

The distance from the starting point is the magnitude of this vector,


2752+3552=445 m