2. Introduction to force and gravity

From Mechanics

(Difference between revisions)
Jump to: navigation, search
m
Current revision (16:44, 7 April 2011) (edit) (undo)
 
(9 intermediate revisions not shown.)
Line 4: Line 4:
{{Selected tab|[[2. Introduction to force and gravity|Theory]]}}
{{Selected tab|[[2. Introduction to force and gravity|Theory]]}}
{{Not selected tab|[[2. Exercises|Exercises]]}}
{{Not selected tab|[[2. Exercises|Exercises]]}}
 +
{{Not selected tab|[[2. Video|Video]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
 +
Line 30: Line 32:
{| width="500px" cellspacing="10px"
{| width="500px" cellspacing="10px"
-
| <math>F=\frac{Gm_{1}m_{2}}{d^{2}}</math>
+
| <math>F=\frac{Gm_{1}m_{2}}{{d}^{\ 2}}</math>
-
<math>G=6.67\times 10^{-11}\text{ kg}^{\text{-1}}\text{m}^{\text{3}}\text{s}^{\text{-2}}</math>
+
<math>G=6\textrm{.}67\times 10^{-11}\text{ kg}^{\text{-1}}\text{m}^{\text{3}}\text{s}^{\text{-2}}</math>
| valign="top"|[[Image:Gravitation.gif]]
| valign="top"|[[Image:Gravitation.gif]]
|}
|}
 +
 +
 +
'''Gravitational force from an heavenly body'''
 +
{| width="500px" cellspacing="10px"
 +
| For a particle in the neighbourhood of a planet, moon or star the distance <math>d</math> is measured from the centre to the particle.
 +
 +
Thus
 +
<math>d=R+h</math>, where <math>h</math> is distance to the surface.
 +
 +
| valign="top"|[[Image:fig2gif.gif]]
 +
|}
 +
'''Gravity on Earth'''
'''Gravity on Earth'''
Line 44: Line 58:
<math>\begin{align}
<math>\begin{align}
& F=mg \\
& F=mg \\
-
& g=9.8\text{ ms}^{\text{-2}} \\
+
& g=9\textrm{.}8\text{ ms}^{\text{-2}} \\
\end{align}</math>
\end{align}</math>
Line 51: Line 65:
Radius of Earth is
Radius of Earth is
-
<math>\text{6}.\text{37}\times \text{1}0^{\text{6}}\text{ }</math>
+
<math>\text{6}\textrm{.}\text{37}\times \text{1}0^{\text{6}}\text{ }</math>
metres
metres
Mass of Earth is
Mass of Earth is
-
<math>\text{5}.\text{98}\times \text{1}0^{\text{24}}\text{ }</math>
+
<math>\text{5}\textrm{.}\text{98}\times \text{1}0^{\text{24}}\text{ }</math>
kg
kg
Line 63: Line 77:
Describe whether or not the forces acting on the following objects are in equilibrium:
Describe whether or not the forces acting on the following objects are in equilibrium:
-
(a) A passenger in a train that travels at a constant speed.
+
a) A passenger in a train that travels at a constant speed.
-
(b) A hot air balloon rising at a constant rate.
+
b) A hot air balloon rising at a constant rate.
-
(c) A stone dropped into a very deep well full of water.
+
c) A stone dropped into a very deep well full of water.
'''Solution'''
'''Solution'''
-
(a) Yes, if it is travelling in a straight line.
+
a) Yes, if it is travelling in a straight line.
-
(b) Yes, if it is travelling in a straight line.
+
b) Yes, if it is travelling in a straight line.
-
(c) Yes, if it reaches a terminal velocity, so that it is travelling in a straight line at a constant speed.
+
c) Yes, if it reaches a terminal velocity, so that it is travelling in a straight line at a constant speed.
Line 85: Line 99:
This is calculated using the fact that the weight is given by <math>mg</math>.
This is calculated using the fact that the weight is given by <math>mg</math>.
-
 
+
-
+
<math>\begin{align}
<math>\begin{align}
-
& mg=22000\times 9.8 \\
+
& mg=22000\times 9\textrm{.}8 \\
& =215600\text{ N}
& =215600\text{ N}
\end{align}</math>
\end{align}</math>
- 
The diagram shows the lorry and its weight.
The diagram shows the lorry and its weight.
[[Image:truck.gif||center]]
[[Image:truck.gif||center]]
- 
Note that reaction forces also act upwards on each wheel.
Note that reaction forces also act upwards on each wheel.
-
 
+
-
+
<math>{{R}_{1}}+{{R}_{2}}+{{R}_{3}}+{{R}_{4}}=215600\ \text{N}</math>
<math>{{R}_{1}}+{{R}_{2}}+{{R}_{3}}+{{R}_{4}}=215600\ \text{N}</math>
- 
Line 109: Line 118:
A box of mass 30 kg is at rest on a table.
A box of mass 30 kg is at rest on a table.
-
(a) Calculate the weight of the box.
+
a) Calculate the weight of the box.
-
(b) State the magnitude of the upward force that the table exerts on the box.
+
b) State the magnitude of the upward force that the table exerts on the box.
'''Solution'''
'''Solution'''
-
(a)
+
a)
<math>\begin{align}
<math>\begin{align}
-
& W=30\times 9.8 \\
+
& W=30\times 9\textrm{.}8 \\
& =294\text{ N}
& =294\text{ N}
\end{align}</math>
\end{align}</math>
-
(b) An upward force of 294 N must act for the box to remain in equilibrium.
+
b) An upward force of 294 N must act for the box to remain in equilibrium.
-
 
+
Line 131: Line 139:
Data:
Data:
-
<math>G=6.67\times {{10}^{-11}}</math>
+
<math>G=6\textrm{.}67\times {{10}^{-11}}</math>
<math>\text{k}{{\text{g}}^{-\text{1}}}{{\text{m}}^{\text{3}}}{{\text{s}}^{-\text{2}}}</math>
<math>\text{k}{{\text{g}}^{-\text{1}}}{{\text{m}}^{\text{3}}}{{\text{s}}^{-\text{2}}}</math>
-
Radius of earth <math>=6.37\times {{10}^{6}} \text{m} </math>
+
Radius of earth <math>=6\textrm{.}37\times {{10}^{6}} \text{m} </math>
-
Mass of earth <math>=5.98\times {{10}^{24}} \text{kg}</math>
+
Mass of earth <math>=5\textrm{.}98\times {{10}^{24}} \text{kg}</math>
'''Solution'''
'''Solution'''
<math>\begin{align}
<math>\begin{align}
-
& \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}=\frac{6.67\times {{10}^{-11}}\times 400\times 5.98\times {{10}^{24}}}{{{\left( 6.37\times {{10}^{6}}+12000 \right)}^{2}}} \\
+
& \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\ {2}}}}=\frac{6\textrm{.}67\times {{10}^{-11}}\times 400\times 5\textrm{.}98\times {{10}^{24}}}{{{\left( 6\textrm{.}37\times {{10}^{6}}+12000 \right)}^{2}}} \\
& =3917\text{ N}
& =3917\text{ N}
\end{align}</math>
\end{align}</math>
-
'''
+
'''[[Example 2.5]]'''
-
[[Example 2.5]]'''
+
-
 
+
The sun has mass
The sun has mass
-
<math>1.99\times {{10}^{30}} \text{kg}</math>
+
<math>1\textrm{.}99\times {{10}^{30}} \text{kg}</math>
. The mean distance of the earth from the sun is approximately
. The mean distance of the earth from the sun is approximately
-
<math>1.5\times {{10}^{11}} \text{m}</math>
+
<math>1\textrm{.}5\times {{10}^{11}} \text{m}</math>
.
.
Line 167: Line 173:
<math>\begin{align}
<math>\begin{align}
-
& \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}=\frac{6.67\times {{10}^{-11}}\times 1.99\times {{10}^{30}}\times 5.98\times {{10}^{24}}}{{{\left( 1.5\times {{10}^{11}} \right)}^{2}}} \\
+
& \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\ 2}}}=\frac{6\textrm{.}67\times {{10}^{-11}}\times 1\textrm{.}99\times {{10}^{30}}\times 5\textrm{.}98\times {{10}^{24}}}{{{\left( 1\textrm{.}5\times {{10}^{11}} \right)}^{2}}} \\
-
& =3.53\times {{10}^{22}}\text{ N}
+
& =3\textrm{.}53\times {{10}^{22}}\text{ N}
\end{align}</math>
\end{align}</math>
(b)
(b)
-
<math>3.53\times {{10}^{22}}\text{ N} </math>
+
<math>3\textrm{.}53\times {{10}^{22}}\text{ N} </math>
(c) The distance between the earth and the sun varies.
(c) The distance between the earth and the sun varies.

Current revision

       Theory          Exercises          Video      



Key Points

Newton's First Law

A particle will move with a constant velocity or remain at rest if the resultant force on the particle is zero.


Equilibrium

If the resultant force on a particle is zero, then the forces acting on the particle are said to be in equilibrium.


The Universal Law of Gravitation

\displaystyle F=\frac{Gm_{1}m_{2}}{{d}^{\ 2}}


\displaystyle G=6\textrm{.}67\times 10^{-11}\text{ kg}^{\text{-1}}\text{m}^{\text{3}}\text{s}^{\text{-2}}

Image:Gravitation.gif


Gravitational force from an heavenly body

For a particle in the neighbourhood of a planet, moon or star the distance \displaystyle d is measured from the centre to the particle.

Thus \displaystyle d=R+h, where \displaystyle h is distance to the surface.

Image:fig2gif.gif


Gravity on Earth

The force of gravity is often called the weight.

\displaystyle \begin{align} & F=mg \\ & g=9\textrm{.}8\text{ ms}^{\text{-2}} \\ \end{align}


Data

Radius of Earth is \displaystyle \text{6}\textrm{.}\text{37}\times \text{1}0^{\text{6}}\text{ } metres

Mass of Earth is \displaystyle \text{5}\textrm{.}\text{98}\times \text{1}0^{\text{24}}\text{ } kg


Example 2.1

Describe whether or not the forces acting on the following objects are in equilibrium:

a) A passenger in a train that travels at a constant speed.

b) A hot air balloon rising at a constant rate.

c) A stone dropped into a very deep well full of water.

Solution

a) Yes, if it is travelling in a straight line.

b) Yes, if it is travelling in a straight line.

c) Yes, if it reaches a terminal velocity, so that it is travelling in a straight line at a constant speed.


Example 2.2

Find the magnitude of the force of gravity (weight) acting on a lorry of mass 22 tonnes.

Solution

This is calculated using the fact that the weight is given by \displaystyle mg.

\displaystyle \begin{align} & mg=22000\times 9\textrm{.}8 \\ & =215600\text{ N} \end{align}

The diagram shows the lorry and its weight.

Note that reaction forces also act upwards on each wheel.

\displaystyle {{R}_{1}}+{{R}_{2}}+{{R}_{3}}+{{R}_{4}}=215600\ \text{N}


Example 2.3

A box of mass 30 kg is at rest on a table.

a) Calculate the weight of the box.

b) State the magnitude of the upward force that the table exerts on the box.

Solution

a)

\displaystyle \begin{align} & W=30\times 9\textrm{.}8 \\ & =294\text{ N} \end{align}

b) An upward force of 294 N must act for the box to remain in equilibrium.


Example 2.4

A satellite, of mass 400 kg, is at a height of 12 km above the surface of the earth. Find the magnitude of the gravitational attraction on the satellite.

Data: \displaystyle G=6\textrm{.}67\times {{10}^{-11}} \displaystyle \text{k}{{\text{g}}^{-\text{1}}}{{\text{m}}^{\text{3}}}{{\text{s}}^{-\text{2}}}

Radius of earth \displaystyle =6\textrm{.}37\times {{10}^{6}} \text{m}

Mass of earth \displaystyle =5\textrm{.}98\times {{10}^{24}} \text{kg}

Solution

\displaystyle \begin{align} & \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\ {2}}}}=\frac{6\textrm{.}67\times {{10}^{-11}}\times 400\times 5\textrm{.}98\times {{10}^{24}}}{{{\left( 6\textrm{.}37\times {{10}^{6}}+12000 \right)}^{2}}} \\ & =3917\text{ N} \end{align}


Example 2.5

The sun has mass \displaystyle 1\textrm{.}99\times {{10}^{30}} \text{kg} . The mean distance of the earth from the sun is approximately \displaystyle 1\textrm{.}5\times {{10}^{11}} \text{m} .

(a) Calculate the force that the sun exerts on the earth.

(b) State the force that the earth exerts on the sun.

(c) Explain why this force varies.

Solution

(a)

\displaystyle \begin{align} & \frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\ 2}}}=\frac{6\textrm{.}67\times {{10}^{-11}}\times 1\textrm{.}99\times {{10}^{30}}\times 5\textrm{.}98\times {{10}^{24}}}{{{\left( 1\textrm{.}5\times {{10}^{11}} \right)}^{2}}} \\ & =3\textrm{.}53\times {{10}^{22}}\text{ N} \end{align}

(b) \displaystyle 3\textrm{.}53\times {{10}^{22}}\text{ N}

(c) The distance between the earth and the sun varies.