Solution to Test Paper 3

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 44: Line 44:
| [[Image:test3ans1.gif]]
| [[Image:test3ans1.gif]]
-
| (3 marks)
+
| (1 marks)
Line 51: Line 51:
| T = 4900 N
| T = 4900 N
-
| (3 marks)
+
| (1 marks)
Line 61: Line 61:
\end{align}</math>
\end{align}</math>
-
| (1 mark)
+
| (3 mark)
 +
|-
 +
| 3 (d)
 +
| <math>\begin{align}
 +
& 4800-4900=500a \\
 +
& a=\frac{-100}{500}=-0.2\text{ m}{{\text{s}}^{\text{-2}}} \\
 +
& 0.\text{2 m}{{\text{s}}^{-\text{2}}}\quad \text{downwards} \\
 +
\end{align}</math>
 +
 +
| (4 mark)
|-
|-
|
|
|
|
-
| '''(7 marks)'''
+
| '''(9 marks)'''

Revision as of 09:09, 8 April 2012

Solutions
1 (a) \displaystyle \begin{align}

& 0=24.5-9.8t \\ & t=\frac{24.5}{9.8}=2.5\text{ seconds} \\ \end{align}

(3 marks)


1 (b) \displaystyle \begin{align}

& {{0}^{2}}={{24.5}^{2}}+2\times (-9.8)\times s \\ & s=\frac{{{24.5}^{2}}}{2\times 9.8}=30.625\text{ m} \\ \end{align}


OR

\displaystyle s=\frac{1}{2}(24.5+0)\times 2.5=30.625\text{ m}

(3 marks)
1 (c) 61.25 m


(1 marks)
(7 marks)


2 (a) Image:test3ans1.gif (1 marks)


2 (b) T = 4900 N (1 marks)


2 (c) \displaystyle \begin{align}

& T-4900=500\times 0.6 \\ & T=300+4900=5200\text{ N} \\ \end{align}

(3 mark)
3 (d) \displaystyle \begin{align}

& 4800-4900=500a \\ & a=\frac{-100}{500}=-0.2\text{ m}{{\text{s}}^{\text{-2}}} \\ & 0.\text{2 m}{{\text{s}}^{-\text{2}}}\quad \text{downwards} \\ \end{align}

(4 mark)
(9 marks)


3 (a) Image:test1ans1.gif (1 mark)


3 (b) \displaystyle F=2\times 1\textrm{.}8=3\textrm{.}6\text{ N} (2 marks)


3 (c) \displaystyle R=2\times 9\textrm{.}8=19\textrm{.}6\text{ N} (2 marks)


3 (d) \displaystyle \begin{align}

& 4800-4900=500a \\ & a=\frac{-100}{500}=-0.2\text{ m}{{\text{s}}^{\text{-2}}} \\ & 0.\text{2 m}{{\text{s}}^{-\text{2}}}\quad \text{downwards} \\ \end{align}


(3 marks)


(8 marks)


4 (a) Image:test1ans2.gif (1 mark)


4 (b) \displaystyle \begin{align}

& R+T\sin 30{}^\circ =200\times 9 \textrm{.}8 \\ & R+0 \textrm{.}5T=1960 \\ & R=1960-0 \textrm{.}5T \\ \end{align}

(3 marks)


4 (c) \displaystyle

\displaystyle \begin{align} & F=T\cos 30{}^\circ \\ & T\cos 30{}^\circ =0\textrm{.}6(1960-0\textrm{.}5T) \\ & T(\cos 30{}^\circ +0\textrm{.}3)=1176 \\ & T=\frac{1176}{(\cos 30{}^\circ +0\textrm{.}3)}=1010\text{ N} \\ \end{align}

(4 marks)


(8 marks)


5 (a) \displaystyle \begin{align}

& 5\mathbf{i}-2\mathbf{j}=4\mathbf{i}+3\mathbf{j}+10\mathbf{a} \\ & \mathbf{a}=\frac{1}{10}(\mathbf{i}-5\mathbf{j})=\left( 0\textrm{.}1\mathbf{i}-0\textrm{.}5\mathbf{j} \right)\text{ m}{{\text{s}}^{\text{-2}}} \\ \end{align}

AG

(3 marks)


5 (b) \displaystyle \mathbf{r}=(4\mathbf{i}+3\mathbf{j})t+0\textrm{.}5(0\textrm{.}1\mathbf{i}-0\textrm{.}5\mathbf{j}){{t}^{2}} (2 marks)


5 (c) \displaystyle \begin{align}

& \mathbf{r}=(4t+0\textrm{.}05{{t}^{2}})\mathbf{i}+(3t-0\textrm{.}25{{t}^{2}})\mathbf{j} \\ & 3t-0\textrm{.}25{{t}^{2}}=0 \\ & t(3-0\textrm{.}25t)=0 \\ & t=0\text{ or }t=\frac{3}{0\textrm{.}25}=12\text{ s} \\ & t=12\text{ s} \\ \end{align}

(3 marks)


5 (d) \displaystyle \begin{align}

& \mathbf{v}=(4+0\textrm{.}1t)\mathbf{i}+(3-0\textrm{.}5t)\mathbf{j} \\ & 3-0\textrm{.}5t=0 \\ & t=6 \text{ s} \\ \end{align}

(3 marks)


(11 marks)


AG: Answer Given in Question – Working must justify answer.