From Mechanics
(Difference between revisions)
|
|
Line 81: |
Line 81: |
| |- | | |- |
| | 3 (a) | | | 3 (a) |
- | |[[Image:test1ans1.gif]] | + | |<math>R=5\times 9.8\cos 42{}^\circ =36.4\text{ N}</math> |
- | | (1 mark) | + | | (2 mark) |
| | | |
| | | |
| |- | | |- |
| | 3 (b) | | | 3 (b) |
- | | <math>F=2\times 1\textrm{.}8=3\textrm{.}6\text{ N}</math> | + | | <math>F=0.4R=14.6\text{ N}</math> |
| + | |
| | (2 marks) | | | (2 marks) |
| | | |
Line 93: |
Line 94: |
| |- | | |- |
| | 3 (c) | | | 3 (c) |
- | | <math>R=2\times 9\textrm{.}8=19\textrm{.}6\text{ N}</math> | + | | <math>\begin{align} |
- | | (2 marks) | + | & 5\times 9.8\sin 42{}^\circ -14.6=5a \\ |
| + | & a=\frac{18.22}{5}=3.64\text{ m}{{\text{s}}^{\text{-2}}} \\ |
| + | \end{align}</math> |
| + | |
| + | | (3 marks) |
| | | |
| | | |
Line 100: |
Line 105: |
| | 3 (d) | | | 3 (d) |
| | <math>\begin{align} | | | <math>\begin{align} |
- | & 4800-4900=500a \\ | + | & 2=\frac{1}{2}\times 3.64{{t}^{2}} \\ |
- | & a=\frac{-100}{500}=-0.2\text{ m}{{\text{s}}^{\text{-2}}} \\
| + | & t=\sqrt{\frac{4}{3.64}}=1.05\text{ seconds} \\ |
- | & 0.\text{2 m}{{\text{s}}^{-\text{2}}}\quad \text{downwards} \\ | + | |
| \end{align}</math> | | \end{align}</math> |
| + | |
| | | |
| | | |
Line 113: |
Line 118: |
| | | | | |
| | | | | |
- | | '''(8 marks)''' | + | | '''(10 marks)''' |
| | | |
| | | |
Revision as of 09:13, 8 April 2012
Solutions
1 (a)
| \displaystyle \begin{align}
& 0=24.5-9.8t \\
& t=\frac{24.5}{9.8}=2.5\text{ seconds} \\
\end{align}
| (3 marks)
|
1 (b)
| \displaystyle \begin{align}
& {{0}^{2}}={{24.5}^{2}}+2\times (-9.8)\times s \\
& s=\frac{{{24.5}^{2}}}{2\times 9.8}=30.625\text{ m} \\
\end{align}
OR
\displaystyle s=\frac{1}{2}(24.5+0)\times 2.5=30.625\text{ m}
| (3 marks)
|
1 (c)
| 61.25 m
| (1 marks)
|
|
| (7 marks)
|
2 (a)
|
| (1 marks)
|
2 (b)
| T = 4900 N
| (1 marks)
|
2 (c)
| \displaystyle \begin{align}
& T-4900=500\times 0.6 \\
& T=300+4900=5200\text{ N} \\
\end{align}
| (3 mark)
|
3 (d)
| \displaystyle \begin{align}
& 4800-4900=500a \\
& a=\frac{-100}{500}=-0.2\text{ m}{{\text{s}}^{\text{-2}}} \\
& 0.\text{2 m}{{\text{s}}^{-\text{2}}}\quad \text{downwards} \\
\end{align}
| (4 mark)
|
|
| (9 marks)
|
3 (a)
| \displaystyle R=5\times 9.8\cos 42{}^\circ =36.4\text{ N}
| (2 mark)
|
3 (b)
| \displaystyle F=0.4R=14.6\text{ N}
| (2 marks)
|
3 (c)
| \displaystyle \begin{align}
& 5\times 9.8\sin 42{}^\circ -14.6=5a \\
& a=\frac{18.22}{5}=3.64\text{ m}{{\text{s}}^{\text{-2}}} \\
\end{align}
| (3 marks)
|
3 (d)
| \displaystyle \begin{align}
& 2=\frac{1}{2}\times 3.64{{t}^{2}} \\
& t=\sqrt{\frac{4}{3.64}}=1.05\text{ seconds} \\
\end{align}
| (3 marks)
|
|
| (10 marks)
|
4 (a)
|
| (1 mark)
|
4 (b)
| \displaystyle \begin{align}
& R+T\sin 30{}^\circ =200\times 9 \textrm{.}8 \\
& R+0 \textrm{.}5T=1960 \\
& R=1960-0 \textrm{.}5T \\
\end{align}
| (3 marks)
|
4 (c)
| \displaystyle
\displaystyle \begin{align}
& F=T\cos 30{}^\circ \\
& T\cos 30{}^\circ =0\textrm{.}6(1960-0\textrm{.}5T) \\
& T(\cos 30{}^\circ +0\textrm{.}3)=1176 \\
& T=\frac{1176}{(\cos 30{}^\circ +0\textrm{.}3)}=1010\text{ N} \\
\end{align}
| (4 marks)
|
|
| (8 marks)
|
5 (a)
| \displaystyle \begin{align}
& 5\mathbf{i}-2\mathbf{j}=4\mathbf{i}+3\mathbf{j}+10\mathbf{a} \\
& \mathbf{a}=\frac{1}{10}(\mathbf{i}-5\mathbf{j})=\left( 0\textrm{.}1\mathbf{i}-0\textrm{.}5\mathbf{j} \right)\text{ m}{{\text{s}}^{\text{-2}}} \\
\end{align}
AG
| (3 marks)
|
5 (b)
| \displaystyle \mathbf{r}=(4\mathbf{i}+3\mathbf{j})t+0\textrm{.}5(0\textrm{.}1\mathbf{i}-0\textrm{.}5\mathbf{j}){{t}^{2}}
| (2 marks)
|
5 (c)
| \displaystyle \begin{align}
& \mathbf{r}=(4t+0\textrm{.}05{{t}^{2}})\mathbf{i}+(3t-0\textrm{.}25{{t}^{2}})\mathbf{j} \\
& 3t-0\textrm{.}25{{t}^{2}}=0 \\
& t(3-0\textrm{.}25t)=0 \\
& t=0\text{ or }t=\frac{3}{0\textrm{.}25}=12\text{ s} \\
& t=12\text{ s} \\
\end{align}
| (3 marks)
|
5 (d)
| \displaystyle \begin{align}
& \mathbf{v}=(4+0\textrm{.}1t)\mathbf{i}+(3-0\textrm{.}5t)\mathbf{j} \\
& 3-0\textrm{.}5t=0 \\
& t=6 \text{ s} \\
\end{align}
| (3 marks)
|
|
| (11 marks)
|
AG: Answer Given in Question – Working must justify answer.