Processing Math: 53%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4. Forces and Vectors

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (15:01, 19 March 2009) (edit) (undo)
 
(One intermediate revision not shown.)
Line 6: Line 6:
-
 
+
[[Image:TF.teori.GIF]]
Line 13: Line 13:
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
-
is one component of the force. If i is horizontal,
+
is one component of the force. If <math>\mathbf{i}</math> is horizontal,
<math>F\cos \alpha </math>
<math>F\cos \alpha </math>
is called the horizontal component of the force.
is called the horizontal component of the force.
Line 19: Line 19:
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
-
is another component of the force. If j is vertical,
+
is another component of the force. If <math>\mathbf{j}</math> is vertical,
<math>F\sin \alpha </math>
<math>F\sin \alpha </math>
is called the vertical component of the force.
is called the vertical component of the force.
Line 25: Line 25:
'''[[Example 4.1]]'''
'''[[Example 4.1]]'''
-
Express each of the forces given below in the form ai + bj.
+
Express each of the forces given below in the form a<math>\mathbf{i}</math> + b<math>\mathbf{j}</math>.
 +
(a)
 +
[[Image:TF4.1a.GIF]]
 +
(b)
 +
[[Image:TF4.1b.GIF]]
'''Solution'''
'''Solution'''
Line 44: Line 48:
Note the negative sign here in the first term.
Note the negative sign here in the first term.
 +
 +
'''[[Example 4.2]]'''
'''[[Example 4.2]]'''
-
Express the force shown below as a vector in terms of i and j.
+
Express the force shown below as a vector in terms of <math>\mathbf{i}</math> and <math>\mathbf{j}</math>.
-
 
+
 +
[[Image:TF4.2.GIF]]
Line 60: Line 66:
Note the negative sign in the second term.
Note the negative sign in the second term.
 +
 +
'''[[Example 4.3]]'''
'''[[Example 4.3]]'''
 +
 +
Express the force shown below as a vector in terms of
 +
<math>\mathbf{i}</math>
 +
and
 +
<math>\mathbf{j}</math>
 +
[[Image:TF4.3.GIF]]
Line 74: Line 88:
Note that here both terms are negative.
Note that here both terms are negative.
 +
 +
'''[[Example 4.4]]'''
'''[[Example 4.4]]'''
-
Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.
+
Find the magnitude of the force (4<math>\mathbf{i}</math> - 8<math>\mathbf{j}</math>) N. Draw a diagram to show the direction of this force.
'''Solution'''
'''Solution'''
 +
 +
[[Image:TF4.4.GIF]]
 +
The magnitude, FN , of the force is given by,
The magnitude, FN , of the force is given by,
Line 96: Line 115:
 +
[[Image:TF4.5.GIF]]
Line 135: Line 155:
& \theta =9.0{}^\circ
& \theta =9.0{}^\circ
\end{align}</math>
\end{align}</math>
 +
 +
 +
[[Image:TF4.5a.GIF]]

Current revision

F=Fcosi+Fcos(90)j=Fcosi+Fsinj


Image:TF.teori.GIF



Fcos is one component of the force. If i is horizontal, Fcos is called the horizontal component of the force.


Fsin is another component of the force. If j is vertical, Fsin is called the vertical component of the force.

Example 4.1

Express each of the forces given below in the form ai + bj.

(a)

Image:TF4.1a.GIF

(b)

Image:TF4.1b.GIF

Solution

(a)

20cos40i+20sin40j


(b)

80cos30i+80sin30j


Note the negative sign here in the first term.


Example 4.2

Express the force shown below as a vector in terms of i and j.


Image:TF4.2.GIF


Solution


28cos30i28sin30j


Note the negative sign in the second term.


Example 4.3


Express the force shown below as a vector in terms of i and j


Image:TF4.3.GIF


Solution


\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}


Note that here both terms are negative.


Example 4.4

Find the magnitude of the force (4\displaystyle \mathbf{i} - 8\displaystyle \mathbf{j}) N. Draw a diagram to show the direction of this force.

Solution

Image:TF4.4.GIF


The magnitude, FN , of the force is given by,

\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}


The angle, \displaystyle \theta , is given by,

\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ


Example 4.5

Find the magnitude and direction of the resultant of the four forces shown in the diagram.


Image:TF4.5.GIF


Solution

Force Vector Form 20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}

18 N \displaystyle -18\mathbf{j}

25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}

15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}


\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}


The magnitude is given by:


\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}


The angle \displaystyle \theta can be found using tan.


\displaystyle \begin{align} & \tan \theta =\frac{3.730}{23.627} \\ & \theta =9.0{}^\circ \end{align}


Image:TF4.5a.GIF