From Mechanics
(Difference between revisions)
|
|
Line 101: |
Line 101: |
| <div class="ovning"> | | <div class="ovning"> |
| | | |
| + | A particle moves so that its displacement, |
| + | <math>s</math> |
| + | m, at time |
| + | <math>t</math> |
| + | seconds is given by |
| + | <math>s=k{{t}^{2}}-\frac{5{{t}^{3}}}{3}</math>. |
| | | |
| + | a) Show that the particle is at rest when |
| + | <math>t~=\text{ }0</math>. |
| | | |
- | </div>{{#NAVCONTENT:Answer a|Answer 18.5a|Answer b|Answer 18.5b|Answer c|Answer 18.5c|Answer d|Answer 18.5d|Solution a|Solution 18.5a|Solution b|Solution 18.5b|Solution c|Solution 18.5c|Solution d|Solution 18.5d}} | + | b) Find k, if the particle comes to rest when |
| + | <math>t~=\text{ 2}0</math>. |
| + | |
| + | c) Sketch an acceleration-time graph for the particle. |
| + | |
| + | d) Find the time when the acceleration of the particle is zero. |
| + | |
| + | |
| + | |
| + | |
| + | </div>{{#NAVCONTENT:Answer b|Answer 18.5b|Answer c|Answer 18.5c|Answer d|Answer 18.5d|Solution a|Solution 18.5a|Solution b|Solution 18.5b|Hint c|Hint 18.5c|Solution d|Solution 18.5d}} |
| | | |
| | | |
Revision as of 14:25, 17 November 2009
Exercise 18.1
As a car moves along a straight rod the distance,
s
metres, of a car from the origin at time
t
seconds is given by:
s=3t3−t460
for
0
t
10.
a) By differentiating, find an expression for the velocity of the car at time
t.
b) Find an expression for the acceleration of the car at time
t.
c) Find the times when the acceleration of the car is zero.
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.2
A particle, of mass 4 kg, accelerates from rest so that the distance that it has travelled in
t
seconds is
s
where
s=5t2−6t.
a) Find the velocity and acceleration of the particle.
b) Find the time when the velocity is zero.
c) Find the magnitude of the resultant force on the particle at this time.
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.3
A crane lifts a load from ground level. The height,
s
m, of the lift at time
t
seconds is given by
s=503t2−t3250
for
0
t
10.
a) Show that the velocity of the load is zero when
t= 10.
b) Find the height of the load at this time.
c) Find the time when the acceleration of the load is zero.
d) Find the height of the load at this time.
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.4
The distance,
s
m, travelled by a dragster at time
t
seconds is given by,
\displaystyle s=36{{t}^{2}}-2{{t}^{3}}
This expression only applies until the acceleration of the dragster becomes zero for the first time.
a) Find the time when the acceleration of the dragster is zero.
b) Find the speed of the dragster at this time.
c) Find the maximum acceleration of the dragster.
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.5
A particle moves so that its displacement,
\displaystyle s
m, at time
\displaystyle t
seconds is given by
\displaystyle s=k{{t}^{2}}-\frac{5{{t}^{3}}}{3}.
a) Show that the particle is at rest when
\displaystyle t~=\text{ }0.
b) Find k, if the particle comes to rest when
\displaystyle t~=\text{ 2}0.
c) Sketch an acceleration-time graph for the particle.
d) Find the time when the acceleration of the particle is zero.
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Hint 18.5c
Loading...
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.6
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Exercise 18.7
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all
Show lessShow less |
Show moreShow more |
Hide allHide all |
Show allShow all