6. Kinematics in one dimension
From Mechanics
Line 81: | Line 81: | ||
Stage 1: | Stage 1: | ||
- | <math>a=\frac{6}{8}=0.75\text{ m}{{\text{s}}^{\text{-2}}}</math> | + | <math>a=\frac{6}{8}=0\textrm{.}75\text{ m}{{\text{s}}^{\text{-2}}}</math> |
Stage 2: | Stage 2: | ||
Line 125: | Line 125: | ||
& 35=10+50a \\ | & 35=10+50a \\ | ||
& 25=50a \\ | & 25=50a \\ | ||
- | & a=\frac{25}{50}=0.5\text{ m}{{\text{s}}^{\text{-2}}} \\ | + | & a=\frac{25}{50}=0\textrm{.}5\text{ m}{{\text{s}}^{\text{-2}}} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 133: | Line 133: | ||
<math>v=20</math> | <math>v=20</math> | ||
and | and | ||
- | <math>a=0.5</math> | + | <math>a=0\textrm{.}5</math> |
. | . | ||
Line 141: | Line 141: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & {{20}^{2}}={{10}^{2}}+2\times 0.5s \\ | + | & {{20}^{2}}={{10}^{2}}+2\times 0\textrm{.}5s \\ |
& 400=100+s \\ | & 400=100+s \\ | ||
& s=300\text{ m} \\ | & s=300\text{ m} \\ | ||
Line 160: | Line 160: | ||
<math>u=0</math> | <math>u=0</math> | ||
, | , | ||
- | <math>a=9.8</math> | + | <math>a=9\textrm{.}8</math> |
and | and | ||
<math>s=10</math> | <math>s=10</math> | ||
Line 169: | Line 169: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 10=0\times t+\frac{1}{2}\times 9.8{{t}^{2}} \\ | + | & 10=0\times t+\frac{1}{2}\times 9\textrm{.}8{{t}^{2}} \\ |
- | & 10=4.9{{t}^{2}} \\ | + | & 10=4\textrm{.}9{{t}^{2}} \\ |
- | & t=\sqrt{\frac{10}{4.9}}=1.43\text{ s (to 3sf)} \\ | + | & t=\sqrt{\frac{10}{4\textrm{.}9}}=1\textrm{.}43\text{ s (to 3sf)} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 179: | Line 179: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & {{v}^{2}}={{0}^{2}}+2\times 9.8\times 10 \\ | + | & {{v}^{2}}={{0}^{2}}+2\times 9\textrm{.}8\times 10 \\ |
& v=\sqrt{196}=14\text{ m}{{\text{s}}^{\text{-1}}} \\ | & v=\sqrt{196}=14\text{ m}{{\text{s}}^{\text{-1}}} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Line 206: | Line 206: | ||
& {{0}^{2}}={{9}^{2}}+2\times (-10)s \\ | & {{0}^{2}}={{9}^{2}}+2\times (-10)s \\ | ||
& 0=81-20s \\ | & 0=81-20s \\ | ||
- | & s=\frac{81}{20}=4.05\text{ m} \\ | + | & s=\frac{81}{20}=4\textrm{.}05\text{ m} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 241: | Line 241: | ||
<math>u=18</math> | <math>u=18</math> | ||
, | , | ||
- | <math>a=-1.2</math> | + | <math>a=-1\textrm{.}2</math> |
and since the lorry comes to rest | and since the lorry comes to rest | ||
<math>v=0</math> | <math>v=0</math> | ||
Line 251: | Line 251: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & {{0}^{2}}={{18}^{2}}+2\times (-1.2)s \\ | + | & {{0}^{2}}={{18}^{2}}+2\times (-1\textrm{.}2)s \\ |
& 324-2.4s=0 \\ | & 324-2.4s=0 \\ | ||
- | & s=\frac{324}{2.4}=135\text{ m} \\ | + | & s=\frac{324}{2\textrm{.}4}=135\text{ m} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 261: | Line 261: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 0=10+(-0.8)t \\ | + | & 0=10+(-0\textrm{.}8)t \\ |
- | & 0=10-0.8t \\ | + | & 0=10-0\textrm{.}8t \\ |
- | & t=\frac{10}{0.8}=12.5\text{ s} \\ | + | & t=\frac{10}{0\textrm{.}8}=12\textrm{.}5\text{ s} \\ |
\end{align}</math> | \end{align}</math> |
Revision as of 11:41, 9 February 2010
Theory | Exercises |
Key Points
Constant Acceleration Equations
| |
| |
| |
| |
Only use the constant acceleration formulae when the acceleration is constant or can be assumed to be constant.
Interpreting Graphs
The gradient of a "displacement – time" graph gives the velocity.
The gradient of a "velocity - time" graph gives the acceleration.
The area under a "velocity – time" graph can be used to find the displacement.
Link with Calculus
The graph shows how the velocity of a car changes as it moves a short distance along a straight road.
a) Find the total distance travelled by the car.
b) Calculate the acceleration of the car on each on each stage of its journey.
Solution
(a) The total distance travelled by the car is given by the area under the graph.
Using the formula for the area of a trapezium gives:
6=114 m
Alternatively, breaking the area under the graph into three parts gives.
21
8
6
+
12
6
+
21
6
6
=24+72+18=114 m
(b) The acceleration of the car on each stage of the journey is given by the gradient of the graph.
Stage 1:
Stage 2:
Stage 3:
As a car travels along a straight road its speed increases from 10
a) Calculate the distance travelled by the car.
b) Find the acceleration of the car.
c) Find the distance travelled when the speed of the car is 20
Solution
To start with we have
a) Using
50=1125 m
b) Using
c) We now have to work with
Using the equation
0.5s400=100+ss=300 m
A ball is dropped from a height of 10 m and falls until it hits the ground. Assume that no resistance forces act on the ball as it falls.
a) Find the time that it takes the ball to reach the ground.
b) Find the speed of the ball when it hits the ground.
Solution
In this case we have
a) Using
t+21
9.8t210=4.9t2t=
104.9=1.43 s (to 3sf)
b) Using
9.8
10v=
196=14 ms-1
A ball is thrown vertically upwards at a speed of 9
Solution
In this case
Using
(−10)s0=81−20ss=2081=4.05 m
But as the ball is thrown from a height of 2m, it reaches a maximum of 6.05 metres above ground level.
As the ball lands 2 metres below its initial position, we have
Using
(−10)t2−2=9t−5t25t2−9t−2=0(5t+1)(t−2)=0t=−51 or t=2
We need a positive time and the ball must be in the air for 2 seconds.
A lorry is initially travelling at 18
Solution
In this case we have
a) Using
(−1.2)s324−2
4s=0s=2.4324=135 m
Using