16. Conservation of momentum
From Mechanics
Line 7: | Line 7: | ||
|} | |} | ||
- | Conservation of Momentum | ||
- | Key | + | |
+ | == '''Key Points''' == | ||
In all collisions, where no external forces act, momentum will be conserved and we can apply | In all collisions, where no external forces act, momentum will be conserved and we can apply | ||
- | |||
<math>{{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}</math> | <math>{{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}</math> | ||
- | |||
or | or | ||
- | |||
<math>{{m}_{A}}{{\mathbf{v}}_{A}}+{{m}_{B}}{{\mathbf{v}}_{B}}={{m}_{A}}{{\mathbf{u}}_{A}}+{{m}_{B}}{{\mathbf{u}}_{B}}</math> | <math>{{m}_{A}}{{\mathbf{v}}_{A}}+{{m}_{B}}{{\mathbf{v}}_{B}}={{m}_{A}}{{\mathbf{u}}_{A}}+{{m}_{B}}{{\mathbf{u}}_{B}}</math> | ||
- | |||
- | |||
- | |||
Line 30: | Line 24: | ||
A bullet of mass 40 grams is travelling horizontally at 250 <math>\text{m}{{\text{s}}^{-1}}</math>. It hits a wooden trolley that is at rest. The bullet and trolley then move together at | A bullet of mass 40 grams is travelling horizontally at 250 <math>\text{m}{{\text{s}}^{-1}}</math>. It hits a wooden trolley that is at rest. The bullet and trolley then move together at | ||
10 <math>\text{m}{{\text{s}}^{-1}}</math>.Assume that the bullet and trolley move along a straight line. Find the mass of the trolley. | 10 <math>\text{m}{{\text{s}}^{-1}}</math>.Assume that the bullet and trolley move along a straight line. Find the mass of the trolley. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Before the collision: | Before the collision: | ||
- | |||
<math>{{u}_{B}}=250</math> | <math>{{u}_{B}}=250</math> | ||
and | and | ||
<math>{{u}_{T}}=0</math> | <math>{{u}_{T}}=0</math> | ||
- | |||
After the collision: | After the collision: | ||
- | |||
<math>{{v}_{B}}={{v}_{T}}=10</math> | <math>{{v}_{B}}={{v}_{T}}=10</math> | ||
- | |||
Also the mass of the bullet should be converted to kg: | Also the mass of the bullet should be converted to kg: | ||
- | |||
<math>{{m}_{B}}=0\textrm{.}04</math> | <math>{{m}_{B}}=0\textrm{.}04</math> | ||
- | |||
Using conservation of momentum gives: | Using conservation of momentum gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& {{m}_{B}}{{u}_{B}}+{{m}_{T}}{{u}_{T}}={{m}_{B}}{{v}_{B}}+{{m}_{T}}{{v}_{T}} \\ | & {{m}_{B}}{{u}_{B}}+{{m}_{T}}{{u}_{T}}={{m}_{B}}{{v}_{B}}+{{m}_{T}}{{v}_{T}} \\ | ||
Line 63: | Line 49: | ||
& {{m}_{T}}=\frac{10-0\textrm{.}4}{10}=0\textrm{.}96\text{ kg} | & {{m}_{T}}=\frac{10-0\textrm{.}4}{10}=0\textrm{.}96\text{ kg} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Line 69: | Line 54: | ||
A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12 <math>\text{m}{{\text{s}}^{-1}}</math> and both vehicles move together along a straight line after the collision. Find the speed of the vehicles after the collision. | A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12 <math>\text{m}{{\text{s}}^{-1}}</math> and both vehicles move together along a straight line after the collision. Find the speed of the vehicles after the collision. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Line 77: | Line 61: | ||
and | and | ||
<math>{{u}_{C}}=0</math> | <math>{{u}_{C}}=0</math> | ||
- | |||
After the collision: | After the collision: | ||
<math>{{v}_{V}}={{v}_{C}}=v</math> | <math>{{v}_{V}}={{v}_{C}}=v</math> | ||
- | |||
The masses should be converted to kilograms: | The masses should be converted to kilograms: | ||
- | |||
<math>{{m}_{V}}=2500</math> | <math>{{m}_{V}}=2500</math> | ||
and | and | ||
<math>{{m}_{C}}=1500</math> | <math>{{m}_{C}}=1500</math> | ||
- | |||
Using conservation of momentum gives: | Using conservation of momentum gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& {{m}_{V}}{{u}_{V}}+{{m}_{C}}{{u}_{C}}={{m}_{V}}{{v}_{V}}+{{m}_{C}}{{v}_{C}} \\ | & {{m}_{V}}{{u}_{V}}+{{m}_{C}}{{u}_{C}}={{m}_{V}}{{v}_{V}}+{{m}_{C}}{{v}_{C}} \\ | ||
Line 100: | Line 79: | ||
& v=\frac{30000}{4000}=7\textrm{.}5\text{ m}{{\text{s}}^{\text{-1}}} | & v=\frac{30000}{4000}=7\textrm{.}5\text{ m}{{\text{s}}^{\text{-1}}} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Line 106: | Line 84: | ||
Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision. | Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Line 114: | Line 91: | ||
and | and | ||
<math>{{u}_{B}}=-u</math> | <math>{{u}_{B}}=-u</math> | ||
- | |||
After the collision: | After the collision: | ||
<math>{{v}_{A}}={{v}_{B}}=v</math> | <math>{{v}_{A}}={{v}_{B}}=v</math> | ||
- | |||
Using conservation of momentum gives: | Using conservation of momentum gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& {{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}={{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}} \\ | & {{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}={{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}} \\ | ||
Line 138: | Line 112: | ||
<math>(2\mathbf{i}-4\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}}</math> | <math>(2\mathbf{i}-4\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}}</math> | ||
. If the particles coalesce during the collision, find their final velocity. | . If the particles coalesce during the collision, find their final velocity. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Line 146: | Line 119: | ||
and | and | ||
<math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}</math> | <math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}</math> | ||
- | |||
After the collision: | After the collision: | ||
<math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math> | <math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math> | ||
- | |||
The masses are defined: | The masses are defined: | ||
Line 156: | Line 127: | ||
and | and | ||
<math>{{m}_{B}}=3</math> | <math>{{m}_{B}}=3</math> | ||
- | |||
Using conservation of momentum gives: | Using conservation of momentum gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 168: | Line 137: | ||
& \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} | & \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Line 180: | Line 148: | ||
[[Image:E16.4fig1.GIF]] | [[Image:E16.4fig1.GIF]] | ||
- | |||
<math>{{\mathbf{u}}_{C}}=15\mathbf{i}</math> | <math>{{\mathbf{u}}_{C}}=15\mathbf{i}</math> | ||
and | and | ||
<math>{{\mathbf{u}}_{V}}=U\mathbf{j}</math> | <math>{{\mathbf{u}}_{V}}=U\mathbf{j}</math> | ||
- | |||
This diagram shows the velocity after the collision. | This diagram shows the velocity after the collision. | ||
Line 192: | Line 158: | ||
<math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}</math> | <math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}</math> | ||
- | |||
Using conservation of momentum gives: | Using conservation of momentum gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 201: | Line 165: | ||
& 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}) | & 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}) | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Considering the <math>\mathbf{i}</math> component gives: | Considering the <math>\mathbf{i}</math> component gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 210: | Line 172: | ||
& V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7\textrm{.}36\text{ m}{{\text{s}}^{\text{-1}}} | & V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7\textrm{.}36\text{ m}{{\text{s}}^{\text{-1}}} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Considering the <math>\mathbf{j}</math> component gives: | Considering the <math>\mathbf{j}</math> component gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} |
Revision as of 17:21, 18 February 2010
Theory | Exercises |
Key Points
In all collisions, where no external forces act, momentum will be conserved and we can apply
or
A bullet of mass 40 grams is travelling horizontally at 250
Solution
Before the collision:
After the collision:
Also the mass of the bullet should be converted to kg:
Using conservation of momentum gives:
250+mT
0=0.04
10+mT
1010=0.4+10mTmT=1010−0.4=0.96 kg
A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12
Solution
Before the collision:
After the collision:
The masses should be converted to kilograms:
Using conservation of momentum gives:
12+1500
0=2500v+1500v30000=4000vv=400030000=7.5 ms-1
Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision.
Solution
Before the collision:
After the collision:
Using conservation of momentum gives:
4u+3m
(−u)=mv+3mvmu=4mvv=mu4mu=4u
A particle, A, of mass 2 kg has velocity
Solution
Before the collision:
After the collision:
The masses are defined:
Using conservation of momentum gives:
(4i+2j)+3
(2i−4j)=2v+3v8i+4j+6i−12j=5v14i−8j=5vv=514i−8j=2.8i−1.6j
A car, of mass 1.2 tonnes, is travelling at 15
Solution
This diagram shows the velocities before the collision.
This diagram shows the velocity after the collision.
\displaystyle {{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}
Using conservation of momentum gives:
\displaystyle \begin{align} & {{m}_{C}}{{\mathbf{u}}_{C}}+{{m}_{V}}{{\mathbf{u}}_{V}}={{m}_{C}}{{\mathbf{v}}_{C}}+{{m}_{V}}{{\mathbf{v}}_{V}} \\ & 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}) \end{align}
Considering the \displaystyle \mathbf{i} component gives:
\displaystyle \begin{align} & 1200\times 15=2600V\cos 20{}^\circ \\ & V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7\textrm{.}36\text{ m}{{\text{s}}^{\text{-1}}} \end{align}
Considering the \displaystyle \mathbf{j} component gives:
\displaystyle \begin{align} & 1400U=2600\times \frac{180}{26\cos 20{}^\circ }\times \sin 20{}^\circ \\ & U=\frac{2600\times 180}{1400\times 26}\tan 20{}^\circ =4\textrm{.}68\text{ m}{{\text{s}}^{\text{-1}}} \end{align}