16. Conservation of momentum
From Mechanics
Line 29: | Line 29: | ||
Before the collision: | Before the collision: | ||
- | <math>{{u}_{B}}=250</math> | + | <math>{{u}_{B}}=250\text{ m}{{\text{s}}^{\text{-1}}}</math> |
and | and | ||
<math>{{u}_{T}}=0</math> | <math>{{u}_{T}}=0</math> | ||
Line 35: | Line 35: | ||
After the collision: | After the collision: | ||
- | <math>{{v}_{B}}={{v}_{T}}=10</math> | + | <math>{{v}_{B}}={{v}_{T}}=10\text{ m}{{\text{s}}^{\text{-1}}}</math> |
Also the mass of the bullet should be converted to kg: | Also the mass of the bullet should be converted to kg: | ||
Line 58: | Line 58: | ||
Before the collision: | Before the collision: | ||
- | <math>{{u}_{V}}=12</math> | + | <math>{{u}_{V}}=12\text{ m}{{\text{s}}^{\text{-1}}}</math> |
and | and | ||
<math>{{u}_{C}}=0</math> | <math>{{u}_{C}}=0</math> | ||
Line 116: | Line 116: | ||
Before the collision: | Before the collision: | ||
- | <math>{{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}</math> | + | <math>{{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math> |
and | and | ||
- | <math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}</math> | + | <math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math> |
After the collision: | After the collision: | ||
<math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math> | <math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math> | ||
- | The masses are defined: | + | The masses are defined (in kg): |
<math>{{m}_{A}}=2</math> | <math>{{m}_{A}}=2</math> | ||
and | and | ||
Line 135: | Line 135: | ||
& 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\ | & 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\ | ||
& 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\ | & 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\ | ||
- | & \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} | + | & \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2\textrm{.}8\mathbf{i}-1\textrm{.}6\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}} |
\end{align}</math> | \end{align}</math> | ||
Line 149: | Line 149: | ||
[[Image:E16.4fig1.GIF]] | [[Image:E16.4fig1.GIF]] | ||
- | <math>{{\mathbf{u}}_{C}}=15\mathbf{i}</math> | + | <math>{{\mathbf{u}}_{C}}=15\mathbf{i}\text{ m}{{\text{s}}^{\text{-1}}}</math> |
and | and | ||
- | <math>{{\mathbf{u}}_{V}}=U\mathbf{j}</math> | + | <math>{{\mathbf{u}}_{V}}=U\mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math> |
This diagram shows the velocity after the collision. | This diagram shows the velocity after the collision. | ||
Line 157: | Line 157: | ||
[[Image:E16.4fig2.GIF]] | [[Image:E16.4fig2.GIF]] | ||
- | <math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}</math> | + | <math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}</math> |
Using conservation of momentum gives: | Using conservation of momentum gives: |
Revision as of 18:00, 18 February 2010
Theory | Exercises |
Key Points
In all collisions, where no external forces act, momentum will be conserved and we can apply
or
A bullet of mass 40 grams is travelling horizontally at 250
Solution
Before the collision:
After the collision:
Also the mass of the bullet should be converted to kg:
Using conservation of momentum gives:
250+mT
0=0.04
10+mT
1010=0.4+10mTmT=1010−0.4=0.96 kg
A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12
Solution
Before the collision:
After the collision:
The masses should be converted to kilograms:
Using conservation of momentum gives:
12+1500
0=2500v+1500v30000=4000vv=400030000=7.5 ms-1
Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision.
Solution
Before the collision:
After the collision:
Using conservation of momentum gives:
4u+3m
(−u)=mv+3mvmu=4mvv=mu4mu=4u
A particle, A, of mass 2 kg has velocity
Solution
Before the collision:
After the collision:
The masses are defined (in kg):
Using conservation of momentum gives:
(4i+2j)+3
(2i−4j)=2v+3v8i+4j+6i−12j=5v14i−8j=5vv=514i−8j=2.8i−1.6j ms-1
A car, of mass 1.2 tonnes, is travelling at 15
Solution
This diagram shows the velocities before the collision.
This diagram shows the velocity after the collision.
\displaystyle {{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}\text{ m}{{\text{s}}^{\text{-1}}}
Using conservation of momentum gives:
\displaystyle \begin{align} & {{m}_{C}}{{\mathbf{u}}_{C}}+{{m}_{V}}{{\mathbf{u}}_{V}}={{m}_{C}}{{\mathbf{v}}_{C}}+{{m}_{V}}{{\mathbf{v}}_{V}} \\ & 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}) \end{align}
Considering the \displaystyle \mathbf{i} component gives:
\displaystyle \begin{align} & 1200\times 15=2600V\cos 20{}^\circ \\ & V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7\textrm{.}36\text{ m}{{\text{s}}^{\text{-1}}} \end{align}
Considering the \displaystyle \mathbf{j} component gives:
\displaystyle \begin{align} & 1400U=2600\times \frac{180}{26\cos 20{}^\circ }\times \sin 20{}^\circ \\ & U=\frac{2600\times 180}{1400\times 26}\tan 20{}^\circ =4\textrm{.}68\text{ m}{{\text{s}}^{\text{-1}}} \end{align}