Solution 10.2
From Mechanics
(Difference between revisions)
(New page: We first obtain the acceleration <math>a</math>. Using the kinematic equation (see section 6) <math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math> <math>\begin{align} & {{0}^{2}}={{50}^{2}}+2\tim...) |
|||
| Line 4: | Line 4: | ||
<math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math> | <math>{{v}^{\ 2}}={{u}^{\ 2}}+2as</math> | ||
| + | |||
| + | gives | ||
<math>\begin{align} | <math>\begin{align} | ||
& {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\ | & {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\ | ||
| - | + | & a=-\frac{2500}{600}=-4\textrm{.}167\ \text{m}{{\text{s}}^{-2}} \\ | |
| - | & a=-\frac{2500}{600}=-4.167\ \text{m}{{\text{s}}^{-2}} \\ | + | |
\end{align}</math> | \end{align}</math> | ||
| + | |||
| + | Then <math>F=ma\ </math> gives | ||
| + | |||
| + | <math>F=1000\times 4\textrm{.}167=4167\ \text{N}</math> | ||
Current revision
We first obtain the acceleration \displaystyle a.
Using the kinematic equation (see section 6)
\displaystyle {{v}^{\ 2}}={{u}^{\ 2}}+2as
gives
\displaystyle \begin{align} & {{0}^{2}}={{50}^{2}}+2\times a\times 300 \\ & a=-\frac{2500}{600}=-4\textrm{.}167\ \text{m}{{\text{s}}^{-2}} \\ \end{align}
Then \displaystyle F=ma\ gives
\displaystyle F=1000\times 4\textrm{.}167=4167\ \text{N}
