Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

16. Conservation of momentum

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #797979" width="5px" |   {{Selected tab|[[16. Conservation of momentu...)
Line 6: Line 6:
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
 +
 +
Conservation of Momentum
 +
 +
Key Results
 +
 +
In all collisions, where no external forces act, momentum will be conserved and we can apply
 +
 +
 +
<math>{{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}}={{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}</math>
 +
 +
or
 +
 +
<math>{{m}_{A}}{{\mathbf{v}}_{\mathbf{A}}}+{{m}_{B}}{{\mathbf{v}}_{\mathbf{B}}}={{m}_{A}}{{\mathbf{u}}_{\mathbf{A}}}+{{m}_{B}}{{\mathbf{u}}_{\mathbf{B}}}</math>
 +
 +
 +
 +
Example 16.1
 +
A bullet of mass 40 grams is travelling horizontally at 250 ms-1. It hits a wooden trolley that is at rest. The bullet and trolley then move together at
 +
10 ms-1.Assume that the bullet and trolley move along a straight line. Find the mass of the trolley.
 +
 +
Solution
 +
Before the collision:
 +
 +
 +
<math>{{u}_{B}}=250</math>
 +
and
 +
<math>{{u}_{T}}=0</math>
 +
 +
 +
After the collision:
 +
 +
 +
<math>{{v}_{B}}={{v}_{T}}=10</math>
 +
 +
 +
Also the mass of the bullet should be converted to kg:
 +
 +
 +
<math>{{m}_{B}}=0.04</math>
 +
 +
 +
Using conservation of momentum gives:
 +
 +
 +
<math>\begin{align}
 +
& {{m}_{B}}{{u}_{B}}+{{m}_{T}}{{u}_{T}}={{m}_{B}}{{v}_{B}}+{{m}_{T}}{{v}_{T}} \\
 +
& 0.04\times 250+{{m}_{T}}\times 0=0.04\times 10+{{m}_{T}}\times 10 \\
 +
& 10=0.4+10{{m}_{T}} \\
 +
& {{m}_{T}}=\frac{10-0.4}{10}=0.96\text{ kg}
 +
\end{align}</math>
 +
 +
 +
Example 16.2
 +
A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12 ms-1 and both vehicles move together along a straight line after the collision. Find the speed of the vehicles after the collision.
 +
 +
Solution
 +
Before the collision:
 +
<math>{{u}_{V}}=12</math>
 +
and
 +
<math>{{u}_{C}}=0</math>
 +
 +
 +
After the collision:
 +
<math>{{v}_{V}}={{v}_{C}}=v</math>
 +
 +
 +
The masses should be converted to kilograms:
 +
 +
 +
<math>{{m}_{V}}=2500</math>
 +
and
 +
<math>{{m}_{C}}=1500</math>
 +
 +
 +
Using conservation of momentum gives:
 +
 +
 +
<math>\begin{align}
 +
& {{m}_{V}}{{u}_{V}}+{{m}_{C}}{{u}_{C}}={{m}_{V}}{{v}_{V}}+{{m}_{C}}{{v}_{C}} \\
 +
& 2500\times 12+1500\times 0=2500v+1500v \\
 +
& 30000=4000v \\
 +
& v=\frac{30000}{4000}=7.5\text{ m}{{\text{s}}^{\text{-1}}}
 +
\end{align}</math>
 +
 +
 +
Example 16.3
 +
Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision.
 +
 +
Solution
 +
Before the collision:
 +
<math>{{u}_{A}}=4u</math>
 +
and
 +
<math>{{u}_{B}}=-u</math>
 +
 +
 +
After the collision:
 +
<math>{{v}_{A}}={{v}_{B}}=v</math>
 +
 +
 +
Using conservation of momentum gives:
 +
 +
 +
<math>\begin{align}
 +
& {{m}_{A}}{{u}_{A}}+{{m}_{B}}{{u}_{B}}={{m}_{A}}{{v}_{A}}+{{m}_{B}}{{v}_{B}} \\
 +
& m\times 4u+3m\times (-u)=mv+3mv \\
 +
& mu=4mv \\
 +
& v=\frac{mu}{4mu}=\frac{u}{4}
 +
\end{align}</math>
 +
 +
 +
Example 16.4
 +
 +
A particle, A, of mass 2 kg has velocity
 +
<math>(4\mathbf{i}+2\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}}</math>
 +
. It collides with a second particle, B, of mass 3 kg and velocity
 +
<math>(2\mathbf{i}-4\mathbf{j})\text{ m}{{\text{s}}^{\text{-1}}}</math>
 +
. If the particles coalesce during the collision, find their final velocity.
 +
 +
Solution
 +
Before the collision:
 +
<math>{{\mathbf{u}}_{A}}=4\mathbf{i}+2\mathbf{j}</math>
 +
and
 +
<math>{{\mathbf{u}}_{B}}=2\mathbf{i}-4\mathbf{j}</math>
 +
 +
 +
After the collision:
 +
<math>{{\mathbf{v}}_{A}}={{\mathbf{v}}_{B}}=\mathbf{v}</math>
 +
 +
 +
The masses are defined:
 +
<math>{{m}_{A}}=2</math>
 +
and
 +
<math>{{m}_{B}}=3</math>
 +
 +
 +
Using conservation of momentum gives:
 +
 +
 +
<math>\begin{align}
 +
& {{m}_{A}}{{\mathbf{u}}_{A}}+{{m}_{B}}{{\mathbf{u}}_{B}}={{m}_{A}}{{\mathbf{v}}_{A}}+{{m}_{B}}{{\mathbf{v}}_{B}} \\
 +
& 2\times (4\mathbf{i}+2\mathbf{j})+3\times (2\mathbf{i}-4\mathbf{j})=2\mathbf{v}+3\mathbf{v} \\
 +
& 8\mathbf{i}+4\mathbf{j}+6\mathbf{i}-12\mathbf{j}=5\mathbf{v} \\
 +
& 14\mathbf{i}-8\mathbf{j}=5\mathbf{v} \\
 +
& \mathbf{v}=\frac{14\mathbf{i}-8\mathbf{j}}{5}=2.8\mathbf{i}-1.6\mathbf{j}
 +
\end{align}</math>
 +
 +
 +
Example 16.5
 +
A car, of mass 1.2 tonnes, is travelling at 15 ms-1, when it is hit by a van, of mass 1.4 tonnes, travelling at right angles to the path of the first car. After the collision the two vehicles move together at an angle of 20 to the original motion of the car. Find the speed of the heavier van just before the collision.
 +
 +
Solution
 +
This diagram shows the velocities before the collision.
 +
 +
 +
 +
 +
 +
 +
 +
 +
<math>{{\mathbf{u}}_{C}}=15\mathbf{i}</math>
 +
and
 +
<math>{{\mathbf{u}}_{V}}=U\mathbf{j}</math>
 +
 +
 +
This diagram shows the velocity after the collision.
 +
 +
 +
 +
 +
 +
<math>{{\mathbf{v}}_{C}}={{\mathbf{v}}_{V}}=V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j}</math>
 +
 +
 +
Using conservation of momentum gives:
 +
 +
 +
<math>\begin{align}
 +
& {{m}_{C}}{{\mathbf{u}}_{C}}+{{m}_{V}}{{\mathbf{u}}_{V}}={{m}_{C}}{{\mathbf{v}}_{C}}+{{m}_{V}}{{\mathbf{v}}_{V}} \\
 +
& 1200\times 15\mathbf{i}+1400\times U\mathbf{j}=2600(V\cos 20{}^\circ \mathbf{i}+V\sin 20{}^\circ \mathbf{j})
 +
\end{align}</math>
 +
 +
 +
Considering the i component gives:
 +
 +
 +
<math>\begin{align}
 +
& 1200\times 15=2600V\cos 20{}^\circ \\
 +
& V=\frac{1200\times 15}{2600\cos 20{}^\circ }=\frac{180}{26\cos 20{}^\circ }=7.36\text{ m}{{\text{s}}^{\text{-1}}}
 +
\end{align}</math>
 +
 +
 +
Considering the j component gives:
 +
 +
 +
<math>\begin{align}
 +
& 1400U=2600\times \frac{180}{26\cos 20{}^\circ }\times \sin 20{}^\circ \\
 +
& U=\frac{2600\times 180}{1400\times 26}\tan 20{}^\circ =4.68\text{ m}{{\text{s}}^{\text{-1}}}
 +
\end{align}</math>

Revision as of 15:18, 29 September 2009

       Theory          Exercises      

Conservation of Momentum

Key Results

In all collisions, where no external forces act, momentum will be conserved and we can apply


mAvA+mBvB=mAuA+mBuB

or

mAvA+mBvB=mAuA+mBuB


Example 16.1 A bullet of mass 40 grams is travelling horizontally at 250 ms-1. It hits a wooden trolley that is at rest. The bullet and trolley then move together at 10 ms-1.Assume that the bullet and trolley move along a straight line. Find the mass of the trolley.

Solution Before the collision:


uB=250 and uT=0


After the collision:


vB=vT=10


Also the mass of the bullet should be converted to kg:


mB=004


Using conservation of momentum gives:


mBuB+mTuT=mBvB+mTvT004250+mT0=00410+mT1010=04+10mTmT=101004=096 kg


Example 16.2 A van, of mass 2.5 tonnes, drives directly into the back of a stationary car, of mass 1.5 tonnes. The van was travelling at 12 ms-1 and both vehicles move together along a straight line after the collision. Find the speed of the vehicles after the collision.

Solution Before the collision: uV=12 and uC=0


After the collision: vV=vC=v


The masses should be converted to kilograms:


mV=2500 and mC=1500


Using conservation of momentum gives:


mVuV+mCuC=mVvV+mCvC250012+15000=2500v+1500v30000=4000vv=400030000=75 ms-1


Example 16.3 Two particles, A and B of mass m and 3m are moving towards each other with speeds of 4u and u respectively along a straight line. They collide and coalesce. Describe how the motion of each particle changes during the collision.

Solution Before the collision: uA=4u and uB=u


After the collision: vA=vB=v


Using conservation of momentum gives:


mAuA+mBuB=mAvA+mBvBm4u+3m(u)=mv+3mvmu=4mvv=mu4mu=4u


Example 16.4

A particle, A, of mass 2 kg has velocity (4i+2j) ms-1 . It collides with a second particle, B, of mass 3 kg and velocity (2i4j) ms-1 . If the particles coalesce during the collision, find their final velocity.

Solution Before the collision: uA=4i+2j and uB=2i4j


After the collision: vA=vB=v


The masses are defined: mA=2 and mB=3


Using conservation of momentum gives:


mAuA+mBuB=mAvA+mBvB2(4i+2j)+3(2i4j)=2v+3v8i+4j+6i12j=5v14i8j=5vv=514i8j=28i16j


Example 16.5 A car, of mass 1.2 tonnes, is travelling at 15 ms-1, when it is hit by a van, of mass 1.4 tonnes, travelling at right angles to the path of the first car. After the collision the two vehicles move together at an angle of 20 to the original motion of the car. Find the speed of the heavier van just before the collision.

Solution This diagram shows the velocities before the collision.





uC=15i and uV=Uj


This diagram shows the velocity after the collision.



vC=vV=Vcos20i+Vsin20j


Using conservation of momentum gives:


mCuC+mVuV=mCvC+mVvV120015i+1400Uj=2600(Vcos20i+Vsin20j)


Considering the i component gives:


120015=2600Vcos20V=1200152600cos20=18026cos20=736 ms-1


Considering the j component gives:


1400U=260018026cos20sin20U=1400262600180tan20=468 ms-1