Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 8.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
Here we use
+
We aassume the starting point is the origin. This means <math>{{\mathbf{r}}_{0}}=0</math>
-
<math>\mathbf{r}=\frac{1}{2}(\mathbf{u}+\mathbf{v})t+{{\mathbf{r}}_{0}}</math>
+
The boat first accelerates to a point <math>A</math> say. We first must calculate the position of this point <math></math>.
-
in the first part.
+
Using <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> with,
-
According to the text
+
<math>t=10</math>, <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> and from part a)
-
<math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math>
+
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
-
<math>\mathbf{v}=6\mathbf{i}-8\mathbf{j}</math>
+
Using <math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math
-
 
+
-
We assume the starting point is the origin so that <math>{{\mathbf{r}}_{0}}=0</math>.
+
-
 
+
-
At <math>t=10</math>
+
-
 
+
-
<math> \mathbf{r}=\frac{1}{2}(\mathbf{i}+2\mathbf{j}+6\mathbf{i}-8\mathbf{j})t=(3\textrm{.}5\mathbf{i}-3\mathbf{j}) \times 10=35\mathbf{i}-30\mathbf{j}=(7\mathbf{i}-6\mathbf{j}) \times 5</math>
+
-
 
+
-
The distance is the magnitude of this vector
+
-
 
+
-
<math>\sqrt{{{7}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{13}=3\textrm{.}6\ \text{m}</math>
+
-
 
+
-
In the second part the boat travel with constant velocity <math>6\mathbf{i}-8\mathbf{j}</math>
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
Thus during the first part the boat has travelled a distance 3.6 m.
+

Revision as of 18:15, 15 April 2010

We aassume the starting point is the origin. This means r0=0

The boat first accelerates to a point A say. We first must calculate the position of this point .

Using r=ut+21at 2+r0 with,

t=10, u=i+2j and from part a)

a=0.5ij ms2

Using rA=(i+2j)10+21at 2+r0