Processing Math: Done
Solution 2.8
From Mechanics
(Difference between revisions)
(New page: Consider a particle on the surface of the planet. <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math> where <math>F</math> is the gravitational force on a particle on the surface of t...) |
|||
Line 1: | Line 1: | ||
Consider a particle on the surface of the planet. | Consider a particle on the surface of the planet. | ||
- | <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math> | + | <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\, 2}}}</math> |
where | where | ||
Line 21: | Line 21: | ||
- | <math>a=\frac{G{{m}_{1}}}{{{d}^{2}}}</math> | + | <math>a=\frac{G{{m}_{1}}}{{{d}^{\, 2}}}</math> |
Thus | Thus | ||
- | <math>{{d}^{2}}=\frac{G{{m}_{1}}}{a}</math> | + | <math>{{d}^{\, 2}}=\frac{G{{m}_{1}}}{a}</math> |
As | As | ||
Line 33: | Line 33: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & {{d}^{2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\ | + | & {{d}^{\, 2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\ |
& d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\ | & d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\ | ||
\end{align}</math> | \end{align}</math> |
Current revision
Consider a particle on the surface of the planet.
where
As
Thus
As
10−11 kg-1m3s-2
6.67
10−11
5
1020
=3.233.35
109=10.4
109=1.04
1010d=
1.04
105=1.02
105 m=102 km