Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 8.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (12:31, 27 March 2011) (edit) (undo)
 
Line 8: Line 8:
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
<math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}\ \text{m}{{\text{s}}^{-2}}</math>
-
<math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-50\mathbf{j}</math>
+
<math>{{\mathbf{r}}_{A}}=(\mathbf{i}+2\mathbf{j}) \times 10+\frac{1}{2}(0\textrm{.}5\mathbf{i}-\mathbf{j}) \times {{10}^{\ 2}}+0=35\mathbf{i}-30\mathbf{j}</math>
The next stage has
The next stage has
-
<math>t=40</math>, <math>\mathbf{a}=0</math>, <math>{{\mathbf{r}}_{0}}=35\mathbf{i}+70\mathbf{j}</math>, and <math>\mathbf{u}=6\mathbf{i}-8\mathbf{j}</math> as the final position and velocity of the first stage is the initial position and velocity of the second stage.
+
<math>t=40</math>, <math>\mathbf{a}=0</math>, <math>{{\mathbf{r}}_{0}}=35\mathbf{i}-30\mathbf{j}</math>, and <math>\mathbf{u}=6\mathbf{i}-8\mathbf{j}</math> as the final position and velocity of the first stage is the initial position and velocity of the second stage.
Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get
Using once again <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}</math> we get
-
<math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-50\mathbf{j})=275\mathbf{i}-355\mathbf{j}</math>
+
<math>\mathbf{r}=(6\mathbf{i}-8\mathbf{j}) \times 40+0+(35\mathbf{i}-30\mathbf{j})=275\mathbf{i}-350\mathbf{j}</math>
This is the boat´s final position.
This is the boat´s final position.
Line 23: Line 23:
-
<math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=450\ \text{m}</math>
+
<math>\sqrt{{{275}^{2}}+{{\left( -355 \right)}^{2}}}=445\ \text{m}</math>

Current revision

We assume the starting point is the origin. This means r0=0

The boat first accelerates to a point A say. We first must calculate the position of this point rA.

Using r=ut+21at 2+r0 with,

t=10, u=i+2j and from part a) a=0.5ij ms2

rA=(i+2j)10+21(0.5ij)10 2+0=35i30j

The next stage has

t=40, a=0, r0=35i30j, and u=6i8j as the final position and velocity of the first stage is the initial position and velocity of the second stage.

Using once again r=ut+21at 2+r0 we get

r=(6i8j)40+0+(35i30j)=275i350j

This is the boat´s final position.

The distance from the starting point is the magnitude of this vector,


2752+3552=445 m