Processing Math: 55%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution to Test Paper 2

From Mechanics

Revision as of 10:10, 8 April 2012 by Ian (Talk | contribs)
Jump to: navigation, search
Solutions
1 (a) 44.1=219.8t2t=4.944.1=3 sORs=219.832=44.1Hits ground after 3 secondsAGM1

A1

A1


(M1)

(A1)

(A1)


(3 marks) M1: Use of constant acceleration

equation with v=0

A1: Correct equation

A1: Correct s


1 (b) v2=02+29.844.1v=864.36=29.4mORv=0+9.83v=29.4M1

A1

A1


(3 marks)


M1: Use of constant acceleration equation with v=0

A1: Correct equation.

A1: Correct v.


1 (c) Air resistance would slow the ball down. B1 (1 mark) B1: Sensible statement about air resistance.
(7 marks)
2 (a) Image:test2ans2.gif B1 (1 mark) B1: Correct horizontal forces.

Ignore any vertical forces.


2 (b) P=900N B1 (1 mark) B1: Correct value for P.
2 (c) P900=20001.2P=2400+900=3300N M1

A1

A1

(1 mark) M1: Three term equation of motion

A1: Correct equation

A1: Correct P.


2 (d) 800900=2000aa=2000100=0.05 ms2Car is slowing down M1

A1

A1

A1

(4 marks) M1: Three term equation of motion

A1: Correct equation

A1: Correct a

A1: Correct statement


(9 marks)
3 (a) R=209.8=196 N M1

A1

(2 marks) M1: Use of R=mg

A1: Correct R.


3 (b) F=0.4196=78.4 N M1

A1

(2 Marks) M1: Use of \displaystyle F=\mu R

A1: Correct \displaystyle F.


3 (c) \displaystyle \begin{align}

& 100-78 \textrm{.}4=20a \\ & a=\frac{100-78 \textrm{.}4}{20}=1 \textrm{.}08 \text{ m}{{\text{s}}^{-2}} \\ \end{align}

M1

A1

A1

(3 marks) M1: Three term equation of motion

A1: Correct equation

A1: Correct \displaystyle a.


(8 marks)
4 (a) Image:test2ans4.gif B1 (1 mark) B1: Correct force diagram
4 (b) \displaystyle \begin{align}

& 100a=200-980\sin 5{}^\circ \\ & a=\frac{200-980\sin 5{}^\circ }{100}=1\textrm{.}15\ \text{m}{{\text{s}}^{-2}} \\ \end{align}

M1A1

M1

A1

(4 marks) M1: Three term equation of motion

A1: Correct equation

M1: Rearranging equation.

A1: Correct \displaystyle a.


4 (c)

\displaystyle \begin{align} & s=0\times 5+\frac{1}{2}\times 1\textrm{.}15\times {{5}^{2}} \\ & =14\textrm{.}4\ \text{m} \\ \end{align}

M1

A1

A1

(3 marks) M1: Using a constant acceleration equation

A1: Correct equation

A1: Correct distance.


(8 marks)
5 (a) \displaystyle \mathbf{v}=(6\mathbf{i}+4\mathbf{j})+(0\textrm{.}2\mathbf{i}-0\textrm{.}4\mathbf{j})t M1

A1

(2 marks) M1: Use of \displaystyle \mathbf{v}=\mathbf{u}+\mathbf{a}t

A1: Correct expression


5 (b) \displaystyle \begin{align}

& 4-0\textrm{.}4t=0 \\ & t=10 \ \text{s}\\ \end{align}

M1

A1

A1

(3 marks) M1: Using \displaystyle \mathbf{j} component equal to zero.

A1: Correct equation.

A1: Correct time.

5 (c) \displaystyle \begin{align}

& \mathbf{r}=(6\mathbf{i}+4\mathbf{j})\times 30+\frac{1}{2}(0\textrm{.}2\mathbf{i}-0\textrm{.}4\mathbf{j})\times {{30}^{2}} \\ & =270\mathbf{i}-60\mathbf{j} \\ & r=\sqrt{{{270}^{2}}+{{60}^{2}}}=277\ \text{m} \\ \end{align}

M1

A1

M1

A1

(4 marks) M1: Using \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{2}}

A1: Correct position vector.

M1: Finding distance.

A1: Correct distance

(8 marks)


KEY M1: Method Mark

A1: Accuracy Mark following a method mark

B1: Accuracy Mark not following a method mark

AG: Answer Given in Question – Working must justify answer.

TOTAL: 40 Marks