Processing Math: 94%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.4 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(14 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[4.4 Trigonometriska ekvationer|Teori]]}}
+
{{Not selected tab|[[4.4 Trigonometric equations|Theory]]}}
-
{{Mall:Vald flik|[[4.4 Övningar|Övningar]]}}
+
{{Selected tab|[[4.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.4:1===
+
===Exercise 4.4:1===
<div class="ovning">
<div class="ovning">
-
För vilka vinklar <math>\,v\,</math>, där <math>\,0 \leq v\leq 2\pi\,</math>, gäller att
+
For which angles <math>\,v\,</math>, where <math>\,0 \leq v\leq 2\pi\,</math>, does
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 24: Line 24:
|width="50%" | <math>\cos{v}=2</math>
|width="50%" | <math>\cos{v}=2</math>
|f)
|f)
-
|width="50%" | <math>\sin{v}=-\displaystyle \frac{1}{2}$</math>
+
|width="50%" | <math>\sin{v}=-\displaystyle \frac{1}{2}</math>
|-
|-
|g)
|g)
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:1|Lösning a |Lösning 4.4:1a|Lösning b |Lösning 4.4:1b|Lösning c |Lösning 4.4:1c|Lösning d |Lösning 4.4:1d|Lösning e |Lösning 4.4:1e|Lösning f |Lösning 4.4:1f|Lösning g |Lösning 4.4:1g}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}}
-
===Övning 4.4:2===
+
===Exercise 4.4:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 47: Line 47:
|width="33%" | <math>\sin{5x}=\displaystyle \frac{1}{2}</math>
|width="33%" | <math>\sin{5x}=\displaystyle \frac{1}{2}</math>
|f)
|f)
-
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$</math>
+
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}}
-
===Övning 4.4:3===
+
===Exercise 4.4:3===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 65: Line 65:
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}}
 +
 
 +
===Exercise 4.4:4===
 +
<div class="ovning">
 +
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
 +
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Solution 4.4:4}}
 +
 
 +
 
 +
===Exercise 4.4:5===
 +
<div class="ovning">
 +
Solve the equation
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin{3x}=\sin{x}</math>
 +
|b)
 +
|width="50%" | <math>\tan{x}=\tan{4x}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}}
 +
 
 +
===Exercise 4.4:6===
 +
<div class="ovning">
 +
Solve the equation
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin x\cdot \cos 3x = 2\sin x</math>
 +
|b)
 +
|width="50%" | <math>\sqrt{2}\sin{x}\cos{x}=\cos{x}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\sin 2x = -\sin x</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}}
 +
 
 +
===Exercise 4.4:7===
 +
<div class="ovning">
 +
Solve the equation
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>2\sin^2{x}+\sin{x}=1</math>
 +
|b)
 +
|width="50%" | <math>2\sin^2{x}-3\cos{x}=0</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}}
 +
 
 +
===Exercise 4.4:8===
 +
<div class="ovning">
 +
Solve the equation
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin{2x}=\sqrt{2}\cos{x}</math>
 +
|b)
 +
|width="50%" | <math>\sin{x}=\sqrt{3}\cos{x}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}}

Current revision

       Theory          Exercises      

Exercise 4.4:1

For which angles v, where 0v2, does

a) sinv=21 b) cosv=21
c) sinv=1 d) tanv=1
e) cosv=2 f) sinv=21
g) tanv=13

Exercise 4.4:2

Solve the equation

a) sinx=23  b) cosx=21 c) sinx=0
d) sin5x=12 e) sin5x=21 f) cos3x=12

Exercise 4.4:3

Solve the equation

a) cosx=cos6 b) sinx=sin5
c) sin(x+40)=sin65 d) sin3x=sin15

Exercise 4.4:4

Determine the angles v in the interval 0v360 which satisfy  cos2v+10=cos110 .


Exercise 4.4:5

Solve the equation

a) sin3x=sinx b) tanx=tan4x
c) cos5x=cos(x+5)

Exercise 4.4:6

Solve the equation

a) sinxcos3x=2sinx b) 2sinxcosx=cosx 
c) sin2x=sinx

Exercise 4.4:7

Solve the equation

a) 2sin2x+sinx=1 b) 2sin2x3cosx=0
c) cos3x=sin4x

Exercise 4.4:8

Solve the equation

a) sin2x=2cosx  b) \displaystyle \sin{x}=\sqrt{3}\cos{x}
c) \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}