Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.4 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Regenerate images and tabs)
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(8 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[4.4 Trigonometriska ekvationer|Teori]]}}
+
{{Not selected tab|[[4.4 Trigonometric equations|Theory]]}}
-
{{Vald flik|[[4.4 Övningar|Övningar]]}}
+
{{Selected tab|[[4.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.4:1===
+
===Exercise 4.4:1===
<div class="ovning">
<div class="ovning">
-
För vilka vinklar <math>\,v\,</math>, där <math>\,0 \leq v\leq 2\pi\,</math>, gäller att
+
For which angles <math>\,v\,</math>, where <math>\,0 \leq v\leq 2\pi\,</math>, does
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 29: Line 29:
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:1|Lösning a |Lösning 4.4:1a|Lösning b |Lösning 4.4:1b|Lösning c |Lösning 4.4:1c|Lösning d |Lösning 4.4:1d|Lösning e |Lösning 4.4:1e|Lösning f |Lösning 4.4:1f|Lösning g |Lösning 4.4:1g}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}}
-
===Övning 4.4:2===
+
===Exercise 4.4:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 49: Line 49:
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}}
-
===Övning 4.4:3===
+
===Exercise 4.4:3===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 65: Line 65:
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}}
-
===Övning 4.4:4===
+
===Exercise 4.4:4===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> i intervallet <math>\,0^\circ \leq v \leq 360^\circ\,</math> som uppfyller <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
+
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:4|Lösning |Lösning 4.4:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Solution 4.4:4}}
-
===Övning 4.4:5===
+
===Exercise 4.4:5===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 85: Line 85:
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:5|Lösning a |Lösning 4.4:5a|Lösning b |Lösning 4.4:5b|Lösning c |Lösning 4.4:5c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}}
-
===Övning 4.4:6===
+
===Exercise 4.4:6===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 99: Line 99:
|width="50%" | <math>\sin 2x = -\sin x</math>
|width="50%" | <math>\sin 2x = -\sin x</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:6|Lösning a |Lösning 4.4:6a|Lösning b |Lösning 4.4:6b|Lösning c |Lösning 4.4:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}}
-
===Övning 4.4:7===
+
===Exercise 4.4:7===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 113: Line 113:
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:7|Lösning a |Lösning 4.4:7a|Lösning b |Lösning 4.4:7b|Lösning c |Lösning 4.4:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}}
-
===Övning 4.4:8===
+
===Exercise 4.4:8===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 127: Line 127:
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.4:8|Lösning a |Lösning 4.4:8a|Lösning b |Lösning 4.4:8b|Lösning c |Lösning 4.4:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}}

Current revision

       Theory          Exercises      

Exercise 4.4:1

For which angles v, where 0v2, does

a) sinv=21 b) cosv=21
c) sinv=1 d) tanv=1
e) cosv=2 f) sinv=21
g) tanv=13

Exercise 4.4:2

Solve the equation

a) sinx=23  b) cosx=21 c) sinx=0
d) sin5x=12 e) sin5x=21 f) cos3x=12

Exercise 4.4:3

Solve the equation

a) cosx=cos6 b) sinx=sin5
c) sin(x+40)=sin65 d) sin3x=sin15

Exercise 4.4:4

Determine the angles v in the interval 0v360 which satisfy  cos2v+10=cos110 .


Exercise 4.4:5

Solve the equation

a) sin3x=sinx b) tanx=tan4x
c) cos5x=cos(x+5)

Exercise 4.4:6

Solve the equation

a) sinxcos3x=2sinx b) 2sinxcosx=cosx 
c) sin2x=sinx

Exercise 4.4:7

Solve the equation

a) 2sin2x+sinx=1 b) 2sin2x3cosx=0
c) cos3x=sin4x

Exercise 4.4:8

Solve the equation

a) sin2x=2cosx  b) sinx=3cosx 
c) 1cos2x=1tanx