Processing Math: 94%
4.4 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
|||
(7 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[4.4 Trigonometric equations|Theory]]}} |
- | {{ | + | {{Selected tab|[[4.4 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
Line 29: | Line 29: | ||
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | |width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}} |
===Exercise 4.4:2=== | ===Exercise 4.4:2=== | ||
Line 49: | Line 49: | ||
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | |width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}} |
===Exercise 4.4:3=== | ===Exercise 4.4:3=== | ||
Line 65: | Line 65: | ||
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | |width="50%" | <math>\sin{3x}=\sin{15^\circ}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}} |
===Exercise 4.4:4=== | ===Exercise 4.4:4=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Solution 4.4:4}} |
Line 85: | Line 85: | ||
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | |width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}} |
===Exercise 4.4:6=== | ===Exercise 4.4:6=== | ||
Line 99: | Line 99: | ||
|width="50%" | <math>\sin 2x = -\sin x</math> | |width="50%" | <math>\sin 2x = -\sin x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}} |
===Exercise 4.4:7=== | ===Exercise 4.4:7=== | ||
Line 113: | Line 113: | ||
|width="50%" | <math>\cos{3x}=\sin{4x}</math> | |width="50%" | <math>\cos{3x}=\sin{4x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}} |
===Exercise 4.4:8=== | ===Exercise 4.4:8=== | ||
Line 127: | Line 127: | ||
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | |width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}} |
Current revision
Theory | Exercises |
Exercise 4.4:1
For which angles v
2
a) | | b) | |
c) | | d) | |
e) | | f) | |
g) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g
Exercise 4.4:2
Solve the equation
a) | ![]() | b) | | c) | |
d) | ![]() | e) | | f) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.4:3
Solve the equation
a) | ![]() | b) | ![]() |
c) | ![]() ![]() | d) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 4.4:4
Determine the angles v
360
2v+10
=cos110
Exercise 4.4:5
Solve the equation
a) | | b) | |
c) | ![]() ![]() |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:6
Solve the equation
a) | ![]() | b) | ![]() |
c) | |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:7
Solve the equation
a) | | b) | |
c) | |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:8
Solve the equation
a) | ![]() | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |
Answer | Solution a | Solution b | Solution c