Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.4 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-Svar +Answer))
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(5 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[4.4 Trigonometriska ekvationer|Theory]]}}
+
{{Not selected tab|[[4.4 Trigonometric equations|Theory]]}}
-
{{Vald flik|[[4.4 Övningar|Exercises]]}}
+
{{Selected tab|[[4.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 29: Line 29:
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Lösning 4.4:1a|Solution b |Lösning 4.4:1b|Solution c |Lösning 4.4:1c|Solution d |Lösning 4.4:1d|Solution e |Lösning 4.4:1e|Solution f |Lösning 4.4:1f|Solution g |Lösning 4.4:1g}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}}
===Exercise 4.4:2===
===Exercise 4.4:2===
Line 49: Line 49:
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Lösning 4.4:2a|Solution b |Lösning 4.4:2b|Solution c |Lösning 4.4:2c|Solution d |Lösning 4.4:2d|Solution e |Lösning 4.4:2e|Solution f |Lösning 4.4:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}}
===Exercise 4.4:3===
===Exercise 4.4:3===
Line 65: Line 65:
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Lösning 4.4:3a|Solution b |Lösning 4.4:3b|Solution c |Lösning 4.4:3c|Solution d |Lösning 4.4:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}}
===Exercise 4.4:4===
===Exercise 4.4:4===
<div class="ovning">
<div class="ovning">
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Lösning 4.4:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Solution 4.4:4}}
Line 85: Line 85:
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Lösning 4.4:5a|Solution b |Lösning 4.4:5b|Solution c |Lösning 4.4:5c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}}
===Exercise 4.4:6===
===Exercise 4.4:6===
Line 99: Line 99:
|width="50%" | <math>\sin 2x = -\sin x</math>
|width="50%" | <math>\sin 2x = -\sin x</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Lösning 4.4:6a|Solution b |Lösning 4.4:6b|Solution c |Lösning 4.4:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}}
===Exercise 4.4:7===
===Exercise 4.4:7===
Line 113: Line 113:
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Lösning 4.4:7a|Solution b |Lösning 4.4:7b|Solution c |Lösning 4.4:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}}
===Exercise 4.4:8===
===Exercise 4.4:8===
Line 127: Line 127:
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Lösning 4.4:8a|Solution b |Lösning 4.4:8b|Solution c |Lösning 4.4:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}}

Current revision

       Theory          Exercises      

Exercise 4.4:1

For which angles v, where 0v2, does

a) sinv=21 b) cosv=21
c) sinv=1 d) tanv=1
e) cosv=2 f) sinv=21
g) tanv=13

Exercise 4.4:2

Solve the equation

a) sinx=23  b) cosx=21 c) sinx=0
d) sin5x=12 e) sin5x=21 f) cos3x=12

Exercise 4.4:3

Solve the equation

a) cosx=cos6 b) sinx=sin5
c) sin(x+40)=sin65 d) sin3x=sin15

Exercise 4.4:4

Determine the angles v in the interval 0v360 which satisfy  cos2v+10=cos110 .


Exercise 4.4:5

Solve the equation

a) sin3x=sinx b) tanx=tan4x
c) cos5x=cos(x+5)

Exercise 4.4:6

Solve the equation

a) sinxcos3x=2sinx b) 2sinxcosx=cosx 
c) sin2x=sinx

Exercise 4.4:7

Solve the equation

a) 2sin2x+sinx=1 b) 2sin2x3cosx=0
c) cos3x=sin4x

Exercise 4.4:8

Solve the equation

a) sin2x=2cosx  b) sinx=3cosx 
c) 1cos2x=1tanx