4.4 Exercises
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-Övningar +Exercises)) |
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
||
(2 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[4.4 Trigonometric equations|Theory]]}} |
- | {{ | + | {{Selected tab|[[4.4 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Current revision
Theory | Exercises |
Exercise 4.4:1
For which angles v
2
a) | | b) | |
c) | | d) | |
e) | | f) | |
g) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g
Exercise 4.4:2
Solve the equation
a) | ![]() | b) | | c) | |
d) | ![]() | e) | | f) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.4:3
Solve the equation
a) | ![]() | b) | \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}} |
c) | \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} | d) | \displaystyle \sin{3x}=\sin{15^\circ} |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 4.4:4
Determine the angles \displaystyle \,v\, in the interval \displaystyle \,0^\circ \leq v \leq 360^\circ\, which satisfy \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.
Exercise 4.4:5
Solve the equation
a) | \displaystyle \sin{3x}=\sin{x} | b) | \displaystyle \tan{x}=\tan{4x} |
c) | \displaystyle \cos{5x}=\cos(x+\pi/5) |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:6
Solve the equation
a) | \displaystyle \sin x\cdot \cos 3x = 2\sin x | b) | \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x} |
c) | \displaystyle \sin 2x = -\sin x |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:7
Solve the equation
a) | \displaystyle 2\sin^2{x}+\sin{x}=1 | b) | \displaystyle 2\sin^2{x}-3\cos{x}=0 |
c) | \displaystyle \cos{3x}=\sin{4x} |
Answer | Solution a | Solution b | Solution c
Exercise 4.4:8
Solve the equation
a) | \displaystyle \sin{2x}=\sqrt{2}\cos{x} | b) | \displaystyle \sin{x}=\sqrt{3}\cos{x} |
c) | \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x} |
Answer | Solution a | Solution b | Solution c