Processing Math: 94%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.4 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-4.4 Trigonometriska ekvationer +4.4 Trigonometric equations))
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(One intermediate revision not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[4.4 Trigonometric equations|Theory]]}}
+
{{Not selected tab|[[4.4 Trigonometric equations|Theory]]}}
-
{{Vald flik|[[4.4 Exercises|Exercises]]}}
+
{{Selected tab|[[4.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Current revision

       Theory          Exercises      

Exercise 4.4:1

For which angles v, where 0v2, does

a) sinv=21 b) cosv=21
c) sinv=1 d) tanv=1
e) cosv=2 f) sinv=21
g) tanv=13

Exercise 4.4:2

Solve the equation

a) sinx=23  b) cosx=21 c) sinx=0
d) sin5x=12 e) sin5x=21 f) cos3x=12

Exercise 4.4:3

Solve the equation

a) cosx=cos6 b) sinx=sin5
c) sin(x+40)=sin65 d) sin3x=sin15

Exercise 4.4:4

Determine the angles v in the interval 0v360 which satisfy  cos2v+10=cos110 .


Exercise 4.4:5

Solve the equation

a) sin3x=sinx b) tanx=tan4x
c) cos5x=cos(x+5)

Exercise 4.4:6

Solve the equation

a) sinxcos3x=2sinx b) 2sinxcosx=cosx 
c) sin2x=sinx

Exercise 4.4:7

Solve the equation

a) 2sin2x+sinx=1 b) 2sin2x3cosx=0
c) cos3x=sin4x

Exercise 4.4:8

Solve the equation

a) sin2x=2cosx  b) \displaystyle \sin{x}=\sqrt{3}\cos{x}
c) \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}