Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.4 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-Svar +Answer))
m (Robot: Automated text replacement (-Lösning +Solution))
Line 29: Line 29:
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|width="50%" | <math>\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Lösning 4.4:1a|Solution b |Lösning 4.4:1b|Solution c |Lösning 4.4:1c|Solution d |Lösning 4.4:1d|Solution e |Lösning 4.4:1e|Solution f |Lösning 4.4:1f|Solution g |Lösning 4.4:1g}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:1|Solution a |Solution 4.4:1a|Solution b |Solution 4.4:1b|Solution c |Solution 4.4:1c|Solution d |Solution 4.4:1d|Solution e |Solution 4.4:1e|Solution f |Solution 4.4:1f|Solution g |Solution 4.4:1g}}
===Exercise 4.4:2===
===Exercise 4.4:2===
Line 49: Line 49:
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|width="33%" | <math>\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Lösning 4.4:2a|Solution b |Lösning 4.4:2b|Solution c |Lösning 4.4:2c|Solution d |Lösning 4.4:2d|Solution e |Lösning 4.4:2e|Solution f |Lösning 4.4:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:2|Solution a |Solution 4.4:2a|Solution b |Solution 4.4:2b|Solution c |Solution 4.4:2c|Solution d |Solution 4.4:2d|Solution e |Solution 4.4:2e|Solution f |Solution 4.4:2f}}
===Exercise 4.4:3===
===Exercise 4.4:3===
Line 65: Line 65:
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|width="50%" | <math>\sin{3x}=\sin{15^\circ}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Lösning 4.4:3a|Solution b |Lösning 4.4:3b|Solution c |Lösning 4.4:3c|Solution d |Lösning 4.4:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:3|Solution a |Solution 4.4:3a|Solution b |Solution 4.4:3b|Solution c |Solution 4.4:3c|Solution d |Solution 4.4:3d}}
===Exercise 4.4:4===
===Exercise 4.4:4===
<div class="ovning">
<div class="ovning">
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Lösning 4.4:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:4|Solution |Solution 4.4:4}}
Line 85: Line 85:
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|width="50%" | <math>\cos{5x}=\cos(x+\pi/5)</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Lösning 4.4:5a|Solution b |Lösning 4.4:5b|Solution c |Lösning 4.4:5c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:5|Solution a |Solution 4.4:5a|Solution b |Solution 4.4:5b|Solution c |Solution 4.4:5c}}
===Exercise 4.4:6===
===Exercise 4.4:6===
Line 99: Line 99:
|width="50%" | <math>\sin 2x = -\sin x</math>
|width="50%" | <math>\sin 2x = -\sin x</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Lösning 4.4:6a|Solution b |Lösning 4.4:6b|Solution c |Lösning 4.4:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:6|Solution a |Solution 4.4:6a|Solution b |Solution 4.4:6b|Solution c |Solution 4.4:6c}}
===Exercise 4.4:7===
===Exercise 4.4:7===
Line 113: Line 113:
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|width="50%" | <math>\cos{3x}=\sin{4x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Lösning 4.4:7a|Solution b |Lösning 4.4:7b|Solution c |Lösning 4.4:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:7|Solution a |Solution 4.4:7a|Solution b |Solution 4.4:7b|Solution c |Solution 4.4:7c}}
===Exercise 4.4:8===
===Exercise 4.4:8===
Line 127: Line 127:
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|width="50%" | <math>\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Lösning 4.4:8a|Solution b |Lösning 4.4:8b|Solution c |Lösning 4.4:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.4:8|Solution a |Solution 4.4:8a|Solution b |Solution 4.4:8b|Solution c |Solution 4.4:8c}}

Revision as of 11:22, 9 September 2008

       Theory          Exercises      

Exercise 4.4:1

For which angles v, where 0v2, does

a) sinv=21 b) cosv=21
c) sinv=1 d) tanv=1
e) cosv=2 f) sinv=21
g) tanv=13

Exercise 4.4:2

Solve the equation

a) sinx=23  b) cosx=21 c) sinx=0
d) sin5x=12 e) sin5x=21 f) cos3x=12

Exercise 4.4:3

Solve the equation

a) cosx=cos6 b) sinx=sin5
c) sin(x+40)=sin65 d) sin3x=sin15

Exercise 4.4:4

Determine the angles v in the interval 0v360 which satisfy  cos2v+10=cos110 .


Exercise 4.4:5

Solve the equation

a) sin3x=sinx b) tanx=tan4x
c) cos5x=cos(x+5)

Exercise 4.4:6

Solve the equation

a) sinxcos3x=2sinx b) 2sinxcosx=cosx 
c) sin2x=sinx

Exercise 4.4:7

Solve the equation

a) 2sin2x+sinx=1 b) 2sin2x3cosx=0
c) cos3x=sin4x

Exercise 4.4:8

Solve the equation

a) sin2x=2cosx  b) sinx=3cosx 
c) 1cos2x=1tanx