Processing Math: Done
1.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Svar +Answer)) |
K (Robot: Automated text replacement (-Lösning +Solution)) |
||
Zeile 25: | Zeile 25: | ||
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | |width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e|Solution f|Solution 1.2:1f}} |
===Example 1.2:2=== | ===Example 1.2:2=== | ||
Zeile 45: | Zeile 45: | ||
|width="33%"| <math>\cos \sqrt{1-x}</math> | |width="33%"| <math>\cos \sqrt{1-x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d|Solution e|Solution 1.2:2e|Solution f|Solution 1.2:2f}} |
===Example 1.2:3=== | ===Example 1.2:3=== | ||
Zeile 65: | Zeile 65: | ||
|width="33%"| <math>x^{\tan x}</math> | |width="33%"| <math>x^{\tan x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b|Solution c|Solution 1.2:3c|Solution d|Solution 1.2:3d|Solution e|Solution 1.2:3e|Solution f|Solution 1.2:3f}} |
===Example 1.2:4=== | ===Example 1.2:4=== | ||
Zeile 76: | Zeile 76: | ||
|width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math> | |width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b}} |
Version vom 07:29, 17. Sep. 2008
|
Example 1.2:1
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | ![]() | b) | | c) | |
d) | | e) | | f) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Example 1.2:2
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | | b) | | c) | ![]() |
d) | | e) | | f) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Example 1.2:3
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | ![]() ![]() | b) | ![]() | c) | ![]() |
d) | | e) | | f) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Example 1.2:4
Calculate the second derivative of the following functions and write the answer in simplest possible form:
a) | ![]() | b) | |