Processing Math: 69%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Svar +Answer))
K (Robot: Automated text replacement (-Lösning +Solution))
Zeile 23: Zeile 23:
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Lösning 3.4:1a|Solution b|Lösning 3.4:1b|Solution c|Lösning 3.4:1c|Solution d|Lösning 3.4:1d|Solution e|Lösning 3.4:1e}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}}
===Exercise 3.4:2===
===Exercise 3.4:2===
<div class="ovning">
<div class="ovning">
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Lösning 3.4:2}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}}
===Exercise 3.4:3===
===Exercise 3.4:3===
<div class="ovning">
<div class="ovning">
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Lösning 3.4:3}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}}
===Exercise 3.4:4===
===Exercise 3.4:4===
<div class="ovning">
<div class="ovning">
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Lösning 3.4:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}}
===Exercise 3.4:5===
===Exercise 3.4:5===
<div class="ovning">
<div class="ovning">
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Lösning 3.4:5}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}}
===Exercise 3.4:6===
===Exercise 3.4:6===
<div class="ovning">
<div class="ovning">
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Lösning 3.4:6}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}}
===Exercise 3.4:7===
===Exercise 3.4:7===
Zeile 59: Zeile 59:
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:7|Solution a|Lösning 3.4:7a|Solution b|Lösning 3.4:7b}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.4:7|Solution a|Solution 3.4:7a|Solution b|Solution 3.4:7b}}

Version vom 07:31, 17. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) x1x21 b) x2x+1 c) x+ax3+a3
d) x+1x3+x+2 e) x2+3x+1x3+2x2+1

Exercise 3.4:2

The equation z33z2+4z2=0 has the root z=1. Determine the other roots.

Exercise 3.4:3

The equation z4+2z3+6z2+8z+8=0 has the roots z=2i and z=1i. Solve the equation.

Exercise 3.4:4

Determine two real numbers a and b, such that the equation  z3+az+b=0  has the root z=12i. Then solve the equation.

Exercise 3.4:5

Determine a and b so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.

Exercise 3.4:6

The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.

Exercise 3.4:7

Determine the polynomial which has the following zeros

a) \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 b) \displaystyle -1+ i\, and \displaystyle \,-1-i