3.1 Rechnungen mit komplexen Zahlen
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-Övningar +Exercises)) |
K (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab)) |
||
Zeile 3: | Zeile 3: | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
{{Vald flik|[[3.1 Complex number calculations|Theory]]}} | {{Vald flik|[[3.1 Complex number calculations|Theory]]}} | ||
- | {{ | + | {{Not selected tab|[[3.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} |
Version vom 08:17, 17. Sep. 2008
| Exercises |
Contents:
- Real and imaginary part
- Addition and subtraction of complex numbers
- Complex conjugate
- Multiplication and division of complex numbers
Learning outcomes:
After this section, you will have learned to:
- Simplify expressions that are constructed using complex numbers and the four arithmetic operations.
- Solve first order complex number equations and simplify the answer.
Introduction
The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type
- REDIRECT Template:Abgesetzte Formel
which do not have a solution among the real numbers. For example, the equation −1
−1
−1
−1
−1
Example 1
If we would like to find out the sum of the roots (solutions) of the equation −1
−1
−1
−1
−1+1−
−1=2
In order to solve our problem we had to use a number that was not real in order to arrive at the real number solution.
Definition of complex numbers
One introduces the imaginary unit −1
- REDIRECT Template:Abgesetzte Formel
where
If
For an arbitrary complex number one often uses the symbol
- REDIRECT Template:Abgesetzte Formel
When one calculates with complex numbers one treats them in principle like real numbers, but keeps track of the fact that
Addition and subtraction
To add or subtract complex numbers one adds (subtracts) the real and imaginary parts separately.
If
- REDIRECT Template:Abgesetzte Formel
Example 2
- \displaystyle (3-5i)+(-4+i)=-1-4i
- \displaystyle \bigl(\tfrac{1}{2}+2i\bigr)-\bigl(\tfrac{1}{6}+3i\bigr) = \tfrac{1}{3}-i
- \displaystyle \frac{3+2i}{5}-\frac{3-i}{2} = \frac{6+4i}{10}-\frac{15-5i}{10} = \frac{-9+9i}{10} = -0\textrm{.}9 + 0\textrm{.}9i
Multiplication
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that \displaystyle i^2=-1. Generally one has for two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di that
- REDIRECT Template:Abgesetzte Formel
Example 3
- \displaystyle 3(4-i)=12-3i
- \displaystyle 2i(3-5i)=6i-10i^2=10+6i
- \displaystyle (1+i)(2+3i)=2+3i+2i+3i^2=-1+5i
- \displaystyle (3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13
- \displaystyle (3+i)^2=3^2+2\cdot3i+i^2=8+6i
- \displaystyle i^{12}=(i^2)^6=(-1)^6=1
- \displaystyle i^{23}=i^{22}\cdot i=(i^2)^{11}\cdot i=(-1)^{11}i=-i
Complex conjugate
If \displaystyle z=a+bi then \displaystyle \overline{z} = a-bi is called the complex conjugate of \displaystyle z (the opposite is also true, that \displaystyle z is conjugate to \displaystyle \overline{z}). One obtains the relationships
- REDIRECT Template:Abgesetzte Formel
but most importantly, using the difference of two squares rule, one obtains
- REDIRECT Template:Abgesetzte Formel
i.e. that the product of a complex number and its conjugate is always real.
Example 4
- \displaystyle z=5+i\qquad then \displaystyle \quad\overline{z}=5-i\,.
- \displaystyle z=-3-2i\qquad then \displaystyle \quad\overline{z} =-3+2i\,.
- \displaystyle z=17\qquad then \displaystyle \quad\overline{z} =17\,.
- \displaystyle z=i\qquad then \displaystyle \quad\overline{z} =-i\,.
- \displaystyle z=-5i\qquad then \displaystyle \quad\overline{z} =5i\,.
Example 5
- If \displaystyle z=4+3i one has
- \displaystyle z+\overline{z} = 4 + 3i + 4 -3i = 8
- \displaystyle z-\overline{z} = 6i
- \displaystyle z \cdot \overline{z} = 4^2-(3i)^2=16+9=25
- If for \displaystyle z one has \displaystyle \mathop{\rm Re} z=-2
and \displaystyle \mathop{\rm Im} z=1, one gets
- \displaystyle z+\overline{z} = 2\,\mathop{\rm Re} z = -4
- \displaystyle z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i
- \displaystyle z\cdot \overline{z} = (-2)^2+1^2=5
Division
For the division of two complex numbers one multiplies the numerator and denominator with the complex conjugate of the denominator thus getting a denominator which is a real number. Thereafter, both the real and imaginary parts of the numerator is divided by this number (the new denominator). In general, if \displaystyle z=a+bi and \displaystyle w=c+di:
- REDIRECT Template:Abgesetzte Formel
Example 6
- \displaystyle \quad\frac{4+2i}{1+i} = \frac{(4+2i)(1-i)}{(1+i)(1-i)} = \frac{4-4i+2i-2i^2}{1-i^2} = \frac{6-2i}{2}=3-i
- \displaystyle \quad\frac{25}{3-4i} = \frac{25(3+4i)}{(3-4i)(3+4i)} = \frac{25(3+4i)}{3^2-16i^2} = \frac{25(3+4i)}{25} = 3+4i
- \displaystyle \quad\frac{3-2i}{i} = \frac{(3-2i)(-i)}{i(-i)} = \frac{-3i+2i^2}{-i^2} = \frac{-2-3i}{1} = -2-3i
Example 7
- \displaystyle \quad\frac{2}{2-i}-\frac{i}{1+i}
= \frac{2(2+i)}{(2-i)(2+i)} - \frac{i(1-i)}{(1+i)(1-i)}
= \frac{4+2i}{5}-\frac{1+i}{2}
\displaystyle \quad\phantom{\frac{2}{2-i}-\frac{i}{1+i}}{} = \frac{8+4i}{10}-\frac{5+5i}{10} = \frac{3-i}{10}\vphantom{\Biggl(} - \displaystyle \quad\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}
= \frac{\dfrac{1-i}{1-i}-\dfrac{2}{1-i}}{\dfrac{2i(2+i)}{(2+i)}
+ \dfrac{i}{2+i}}
= \frac{\dfrac{1-i-2}{1-i}}{\dfrac{4i+2i^2 + i}{2+i}}
= \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-i}{1-i}\cdot \frac{2+i}{-2+5i} = \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} = \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}
\displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-3i}{3+7i} = \frac{(-1-3i)(3-7i)}{(3+7i)(3-7i)} = \frac{-3+7i-9i+21i^2}{3^2-49i^2}\vphantom{\Biggl(} \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-24-2i}{58} = \frac{-12-i}{29}\vphantom{\Biggl(}
Example 8
Determine the real number \displaystyle a so that the expression \displaystyle \ \frac{2-3i}{2+ai}\ becomes real.
Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.
- REDIRECT Template:Abgesetzte Formel
If the expression is to be real , the imaginary part must be 0, ie.
- REDIRECT Template:Abgesetzte Formel
Equations
For two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di to be equal, requires that both the real and imaginary parts are equal. In other words, that \displaystyle a=c and \displaystyle b=d. When you are looking for an unknown complex number \displaystyle z in an equation, you can either try to solve for the number \displaystyle z in the usual way, or insert \displaystyle z=a+bi in the equation and then compare the real and imaginary parts of the two sides of the equation with each other.
Example 9
- Solve the equation \displaystyle 3z+1-i=z-3+7i.
Collect all \displaystyle z on the left-hand side by subtracting \displaystyle z from both sides- REDIRECT Template:Abgesetzte Formel and now subtract \displaystyle 1-i
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle z(-1-i)=6-2i.
Divide both sides by \displaystyle -1-i in order to obtain \displaystyle z- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle 3iz-2i=1-z.
Adding \displaystyle z and \displaystyle 2i to both sides gives- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle 2z+1-i=\bar z +3 + 2i.
The equation contains both \displaystyle z as well as \displaystyle \overline{z} and therefore we assume \displaystyle z to be \displaystyle z=a+ib and solve the equation for \displaystyle a and \displaystyle b by equating the real and imaginary parts of both sides- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
Study advice
Keep in mind that:
Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that \displaystyle i^2=-1.
Quotients of complex numbers are simplified by multiplying the numerator and denominator with the complex conjugate of the denominator.