Lösung 1.1:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.1:2a moved to Solution 1.1:2a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | By using the rule for differentiation |
- | < | + | |
- | {{ | + | |
+ | <math>\frac{d}{dx}x^{n}=nx^{n-1}</math> | ||
+ | |||
+ | |||
+ | the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\ | ||
+ | & =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\ | ||
+ | \end{align}</math> |
Version vom 10:55, 10. Okt. 2008
By using the rule for differentiation
\displaystyle \frac{d}{dx}x^{n}=nx^{n-1}
the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
\displaystyle \begin{align}
& {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\
& =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\
\end{align}