Lösung 1.1:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:2a moved to Solution 1.1:2a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
By using the rule for differentiation
-
<center> [[Image:1_1_2a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\frac{d}{dx}x^{n}=nx^{n-1}</math>
 +
 
 +
 
 +
the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
 +
 
 +
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\
 +
& =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\
 +
\end{align}</math>

Version vom 10:55, 10. Okt. 2008

By using the rule for differentiation


\displaystyle \frac{d}{dx}x^{n}=nx^{n-1}


the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain


\displaystyle \begin{align} & {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\ & =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\ \end{align}