Lösung 1.2:2e
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:2e moved to Solution 1.2:2e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | One way to differentiate the expression could be to expand |
- | < | + | <math>\left( 2x+1 \right)^{4}</math> |
- | {{ | + | multiply by |
- | {{ | + | <math>x</math> |
- | < | + | and differentiate term by term, but it is simpler instead to use the structure of the expression and differentiate step by step using the differentiation rules. |
- | {{ | + | |
+ | To begin with, we have a product of | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>\left( 2x+1 \right)^{4}</math> | ||
+ | so the product rule gives that | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( x \right)^{\prime }\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\ | ||
+ | & =1\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | We can differentiate the expression | ||
+ | <math>\left( 2x+1 \right)^{4}</math> | ||
+ | by viewing it as "something raised to the | ||
+ | <math>\text{4}</math>", | ||
+ | |||
+ | |||
+ | <math>\left\{ \left. {} \right\} \right.^{4}</math>. | ||
+ | |||
+ | The chain rule then gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}\left\{ \left. {} \right\} \right.^{4}=4\centerdot \left\{ \left. {} \right\} \right.^{3}\centerdot \left( \left\{ \left. {} \right\} \right. \right)^{\prime } \\ | ||
+ | & \frac{d}{dx}\left( 2x+1 \right)^{4}=4\centerdot \left( 2x+1 \right)^{3}\centerdot \left( 2x+1 \right)^{\prime } \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We carry out the last differentiation directly, and obtain | ||
+ | |||
+ | |||
+ | <math>\left( 2x+1 \right)^{\prime }=2</math> | ||
+ | |||
+ | |||
+ | If we go through the whole calculation from the beginning, it is | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( x \right)^{\prime }\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\ | ||
+ | & =1\centerdot \left( 2x+1 \right)^{4}+x\centerdot 4\left( 2x+1 \right)^{3}\centerdot \left( 2x+1 \right)^{\prime } \\ | ||
+ | & =\left( 2x+1 \right)^{4}+x\centerdot 4\left( 2x+1 \right)^{3}\centerdot 2 \\ | ||
+ | & =\left( 2x+1 \right)^{4}+8x\left( 2x+1 \right)^{3} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Both terms contain a common factor | ||
+ | <math>\left( 2x+1 \right)^{3}</math> | ||
+ | which we can take out to get an answer in factorized form: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( 2x+1 \right)^{3}\left( \left( 2x+1 \right)+8x \right) \\ | ||
+ | & =\left( 2x+1 \right)^{3}\left( 10x+1 \right) \\ | ||
+ | \end{align}</math> |
Version vom 13:39, 11. Okt. 2008
One way to differentiate the expression could be to expand
2x+1
4
To begin with, we have a product of
2x+1
4
2x+1
4=
x
2x+1
4+x
2x+1
4
=1
2x+1
4+x
2x+1
4
We can differentiate the expression
2x+1
4
4
The chain rule then gives
4=4
3
ddx
2x+1
4=4
2x+1
3
2x+1
We carry out the last differentiation directly, and obtain
2x+1
=2
If we go through the whole calculation from the beginning, it is
2x+1
4=
x
2x+1
4+x
2x+1
4
=1
2x+1
4+x
4
2x+1
3
2x+1
=
2x+1
4+x
4
2x+1
3
2=
2x+1
4+8x
2x+1
3
Both terms contain a common factor
2x+1
3
2x+1
4=
2x+1
3
2x+1
+8x
=
2x+1
3
10x+1