Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.3:5

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:5 moved to Solution 1.3:5: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The channel holds most water when its cross-sectional area is greatest.
-
<center> [[Image:1_3_5-1(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:1_3_5-2(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:1_3_5-3(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:1_3_5-4(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
[[Image:1_3_5_1_1.gif|center]]
[[Image:1_3_5_1_1.gif|center]]
 +
 +
By dividing up the channel's cross-section into a rectangle and two triangles we can, with the help of a little trigonometry, determine the lengths of the rectangle's and triangles' sides, and thence the cross-sectional area.
[[Image:1_3_5_1_2.gif|center]]
[[Image:1_3_5_1_2.gif|center]]
 +
 +
The area of the cross-section is
 +
 +
 +
<math>\begin{align}
 +
& A\left( \alpha \right)=10\centerdot 10\cos \alpha +2\centerdot \frac{1}{2}\centerdot 10\cos \alpha \centerdot 10\sin \alpha \\
 +
& =100\cos \alpha \left( 1+\sin \alpha \right) \\
 +
\end{align}</math>
 +
 +
 +
If we limit the angle to lie between
 +
<math>0</math>
 +
and
 +
<math>{\pi }/{2}\;</math>, the problem can be formulated as :
 +
 +
Maximise the function
 +
<math>A\left( \alpha \right)=100\cos \alpha \left( 1+\sin \alpha \right)</math>
 +
when
 +
<math>0\le \alpha \le {\pi }/{2}\;</math>
 +
.
 +
The area function is a differentiable function and the area is least when
 +
<math>\alpha =0</math>
 +
or
 +
<math>\alpha ={\pi }/{2}\;</math>, so the area must assume its maximum at a critical point of the area function.
 +
 +
We differentiate the area function:
 +
 +
 +
<math>\begin{align}
 +
& {A}'\left( \alpha \right)=100\centerdot \left( -\sin \alpha \right)\centerdot \left( 1+\sin \alpha \right)+100\centerdot \cos \alpha \centerdot \cos \alpha \\
 +
& =-100\sin \alpha -100\sin ^{2}\alpha +100\cos ^{2}\alpha \\
 +
\end{align}</math>
 +
 +
 +
At a critical point
 +
<math>{A}'\left( \alpha \right)=0</math>
 +
and this gives us the equation
 +
 +
<math>\sin \alpha +\sin ^{2}\alpha -\cos ^{2}\alpha =0</math>
 +
 +
 +
after eliminating the factor
 +
<math>-100</math>. We replace
 +
<math>\cos ^{2}\alpha </math>
 +
with
 +
<math>1-\sin ^{2}\alpha </math>
 +
(according to the Pythagorean identity) to obtain an equation solely in
 +
<math>\sin \alpha </math>,
 +
 +
<math>\begin{align}
 +
& \sin \alpha +\sin ^{2}\alpha -\left( 1-\sin ^{2}\alpha \right)=0 \\
 +
& 2\sin ^{2}\alpha +\sin \alpha -1=0 \\
 +
\end{align}</math>
 +
 +
This is a second-degree equation in sin alpha and completing the square gives that
 +
 +
<math>\begin{align}
 +
& 2\left( \sin \alpha +\frac{1}{4} \right)^{2}-2\left( \frac{1}{4} \right)^{2}-1=0 \\
 +
& \left( \sin \alpha +\frac{1}{4} \right)^{2}=\frac{9}{16} \\
 +
\end{align}</math>,
 +
 +
and we obtain
 +
<math>\sin \alpha =-\frac{1}{4}\pm \frac{3}{4}</math>
 +
i.e.
 +
<math>\sin \alpha =-1</math>
 +
or
 +
<math>\sin \alpha =\frac{1}{2}</math>
 +
 +
The case
 +
<math>\sin \alpha =-1</math>
 +
is not satisfied for
 +
<math>0\le \alpha \le {\pi }/{2}\;</math>
 +
and
 +
<math>\sin \alpha =\frac{1}{2}</math>
 +
gives
 +
<math>\alpha ={\pi }/{6}\;</math>. Thus
 +
<math>\alpha ={\pi }/{6}\;</math>
 +
 +
is a critical point.
 +
 +
If we summarize, we know therefore that the cross-sectional area has local minimum points at
 +
<math>\alpha =0</math>
 +
and
 +
<math>\alpha ={\pi }/{2}\;</math>
 +
and that we have a critical point at .
 +
<math>\alpha ={\pi }/{6}\;</math>
 +
This critical point must be a maximum, which we can also show using the second derivative,
 +
 +
 +
<math>\begin{align}
 +
& {A}''\left( \alpha \right)=-100\cos \alpha -100\centerdot 2\sin \alpha \centerdot \cos \alpha +100\centerdot 2\cos \alpha \centerdot \left( -\sin \alpha \right) \\
 +
& =-100\cos \alpha \left( 1+4\sin \alpha \right) \\
 +
\end{align}</math>
 +
 +
 +
which is negative at
 +
<math>\alpha ={\pi }/{6}\;</math>,
 +
 +
 +
<math>\begin{align}
 +
& {A}''\left( \frac{\pi }{6} \right)=-100\cos \frac{\pi }{6}\centerdot \left( 1+4\sin \frac{\pi }{6} \right) \\
 +
& =-100\centerdot \frac{\sqrt{3}}{2}\centerdot \left( 1+4\centerdot \frac{1}{2} \right)<0 \\
 +
\end{align}</math>
 +
 +
There are no local maximum points other than
 +
<math>\alpha ={\pi }/{6}\;</math>, which must therefore also be a global maximum.

Version vom 10:31, 16. Okt. 2008

The channel holds most water when its cross-sectional area is greatest.

By dividing up the channel's cross-section into a rectangle and two triangles we can, with the help of a little trigonometry, determine the lengths of the rectangle's and triangles' sides, and thence the cross-sectional area.

The area of the cross-section is


A=1010cos+22110cos10sin=100cos1+sin


If we limit the angle to lie between 0 and 2, the problem can be formulated as :

Maximise the function A=100cos1+sin  when 02 . The area function is a differentiable function and the area is least when =0 or =2, so the area must assume its maximum at a critical point of the area function.

We differentiate the area function:


A=100sin1+sin+100coscos=100sin100sin2+100cos2 


At a critical point A=0  and this gives us the equation

sin+sin2cos2=0


after eliminating the factor 100. We replace cos2 with 1sin2 (according to the Pythagorean identity) to obtain an equation solely in sin,

sin+sin21sin2=02sin2+sin1=0 

This is a second-degree equation in sin alpha and completing the square gives that

2sin+41224121=0sin+412=916,

and we obtain sin=4143 i.e. sin=1 or sin=21

The case sin=1 is not satisfied for 02 and sin=21 gives =6. Thus =6

is a critical point.

If we summarize, we know therefore that the cross-sectional area has local minimum points at =0 and =2 and that we have a critical point at . =6 This critical point must be a maximum, which we can also show using the second derivative,


A=100cos1002sincos+1002cossin=100cos1+4sin 


which is negative at =6,


A6=100cos61+4sin6=100231+4210 

There are no local maximum points other than =6, which must therefore also be a global maximum.