Processing Math: Done
Lösung 3.3:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.3:1d moved to Solution 3.3:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | Because we are going to raise something to the power |
- | < | + | <math>\text{12}</math>, the base in the expression should be written in polar form. In turn, the base consists of a quotient which it is advantageous to calculate in polar form. Thus, it seems appropriate to write |
- | + | <math>1+i\sqrt{3}</math> | |
- | { | + | and |
- | < | + | <math>\text{1}+i</math> in polar form right from the beginning and to carry out all calculations in polar form. |
- | + | ||
[[Image:3_3_1_d.gif]] [[Image:3_3_1_d_text.gif]] | [[Image:3_3_1_d.gif]] [[Image:3_3_1_d_text.gif]] | ||
+ | |||
+ | |||
+ | We obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 1+i\sqrt{3}=2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right) \\ | ||
+ | & \text{1}+i=\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1+i\sqrt{3}}{\text{1}+i}=\frac{2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)}{\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right)} \\ | ||
+ | & =\frac{2}{\sqrt{2}}\left( \cos \left( \frac{\pi }{3}-\frac{\pi }{4} \right)+i\sin \left( \frac{\pi }{3}-\frac{\pi }{4} \right) \right) \\ | ||
+ | & =\sqrt{2}\left( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} \right) \\ | ||
+ | & \\ | ||
+ | & \\ | ||
+ | & \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Finally, de Moivre's formula gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \frac{1+i\sqrt{3}}{\text{1}+i} \right)^{12}=\left( \sqrt{2} \right)^{12}\left( \cos 12\centerdot \frac{\pi }{12}+i\sin 12\centerdot \frac{\pi }{12} \right) \\ | ||
+ | & =2^{\frac{1}{2}\centerdot 12}\left( \cos \pi +i\sin \pi \right) \\ | ||
+ | & =2^{6}\centerdot \left( -1+i\centerdot 0 \right) \\ | ||
+ | & =-64 \\ | ||
+ | \end{align}</math> |
Version vom 07:49, 24. Okt. 2008
Because we are going to raise something to the power
3
We obtain
3=2
cos
3+isin
3
1+i=
2
cos
4+isin
4
and
3=2
cos
3+isin
3
2
cos
4+isin
4
=2
2
cos
3−
4
+isin
3−
4
=
2
cos
12+isin
12
Finally, de Moivre's formula gives
1+i1+i
3
12=
2
12
cos12
12+isin12
12
=221
12
cos
+isin
=26
−1+i
0
=−64