Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.4:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.4:1d moved to Solution 3.4:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by adding and taking away
-
<center> [[Image:3_4_1d.gif]] </center>
+
<math>x^{2}</math>
-
{{NAVCONTENT_STOP}}
+
in the numerator, so that, in combination with
 +
<math>x^{3}</math>, we obtain the expression
 +
<math>x^{3}+x^{2}=x^{2}\left( x+1 \right)</math>
 +
which can be simplified with the denominator
 +
<math>x+1</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{x^{3}+x+2}{x+1}=\frac{x^{3}+x^{2}-x^{2}+x+2}{x+1} \\
 +
& =\frac{x^{3}+x^{2}}{x+1}+\frac{-x^{2}+x+2}{x+1}=\frac{x^{2}\left( x+1 \right)}{x+1}+\frac{-x^{2}+x+2}{x+1} \\
 +
& =x^{2}+\frac{-x^{2}+x+2}{x+1} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The term
 +
<math>-x^{2}</math>
 +
in the remaining quotient needs to complemented with
 +
<math>-x</math>
 +
so that we get
 +
<math>-x^{2}-x=-x\left( x+1 \right)</math>, which is divisible by
 +
<math>x+1</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& x^{2}+\frac{-x^{2}+x+2}{x+1}=x^{2}+\frac{-x^{2}-x+x+x+2}{x+1} \\
 +
& =x^{2}+\frac{-x^{2}-x}{x+1}+\frac{2x+2}{x+1} \\
 +
& =x^{2}+\frac{-x\left( x+1 \right)}{x+1}+\frac{2x+2}{x+1} \\
 +
& =x^{2}-x+\frac{2x+2}{x+1} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The last quotient divides perfectly and we obtain
 +
 
 +
 
 +
<math>x^{2}-x+\frac{2x+2}{x+1}=x^{2}-x+2.</math>
 +
 
 +
 
 +
A quick check of whether
 +
 
 +
 
 +
<math>\frac{x^{3}+x+2}{x+1}=x^{2}-x+2.</math>
 +
 
 +
 
 +
is the correct answer is to investigate whether
 +
 
 +
 
 +
<math>x^{3}+x+2=\left( x^{2}-x+2 \right)\left( x+1 \right)</math>
 +
 
 +
holds. If we expand the right-hand side, we see that the relation really does hold:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( x^{2}-x+2 \right)\left( x+1 \right)=x^{3}+x^{2}-x^{2}-x+2x+2 \\
 +
& =x^{3}+x+2 \\
 +
\end{align}</math>

Version vom 13:22, 26. Okt. 2008

We start by adding and taking away x2 in the numerator, so that, in combination with x3, we obtain the expression x3+x2=x2x+1  which can be simplified with the denominator x+1,


x+1x3+x+2=x+1x3+x2x2+x+2=x+1x3+x2+x+1x2+x+2=x+1x2x+1+x+1x2+x+2=x2+x+1x2+x+2


The term x2 in the remaining quotient needs to complemented with x so that we get x2x=xx+1 , which is divisible by x+1,


x2+x+1x2+x+2=x2+x+1x2x+x+x+2=x2+x+1x2x+x+12x+2=x2+x+1xx+1+x+12x+2=x2x+x+12x+2


The last quotient divides perfectly and we obtain


x2x+x+12x+2=x2x+2


A quick check of whether


x+1x3+x+2=x2x+2


is the correct answer is to investigate whether


x3+x+2=x2x+2x+1 

holds. If we expand the right-hand side, we see that the relation really does hold:


x2x+2x+1=x3+x2x2x+2x+2=x3+x+2