Lösung 3.4:6
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:6 moved to Solution 3.4:6: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we try to determine the pure imaginary root. |
- | < | + | |
- | {{ | + | We can write the imaginary root as , where is a real number. If we substitute in , the equation should then be satisfied, |
+ | |||
+ | |||
+ | <math>\left( ia \right)^{4}+3\left( ia \right)^{3}+\left( ia \right)^{2}+18\left( ia \right)-30=0</math> | ||
+ | |||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>a^{4}-3^{3}i-a^{2}+18ai-30=0</math> | ||
+ | |||
+ | |||
+ | and, if collect together the real and imaginary parts on the left-hand side, we have | ||
+ | |||
+ | |||
+ | <math>\left( a^{4}-a^{2}-30 \right)+a\left( -3a^{2}+18 \right)i=0</math> | ||
+ | |||
+ | |||
+ | If both sides are to be equal, the left-hand side's real and imaginary parts must be zero, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | a^{4}-a^{2}-30=0 \\ | ||
+ | a\left( -3a^{2}+18 \right)=0 \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | The other relation gives | ||
+ | <math>a=0\text{ }</math> | ||
+ | or | ||
+ | <math>a=\pm \sqrt{6}</math>, but it is only | ||
+ | <math>a=\pm \sqrt{6}</math> | ||
+ | which satisfies the first relation. | ||
+ | |||
+ | Thus, the equation | ||
+ | <math>z^{4}+3z^{3}+z^{2}+18z-30=0</math> | ||
+ | has two pure imaginary roots, | ||
+ | <math>z=-i\sqrt{6}</math> | ||
+ | and | ||
+ | <math>z=i\sqrt{6}</math>. Note that it is completely normal to obtain two imaginary roots. | ||
+ | The polynomial equation has real coefficients and must therefore have complex conjugate roots. | ||
+ | |||
+ | Now we tackle the problem of determining the equation's other two roots. Because we know that the equation has the two roots | ||
+ | <math>z=\pm i\sqrt{6}</math>, the factor theorem gives that the equation contains the factor | ||
+ | |||
+ | |||
+ | <math>\left( z-i\sqrt{6} \right)\left( z+i\sqrt{6} \right)=z^{2}+6</math> | ||
+ | |||
+ | |||
+ | i.e. we can factorize the left-hand side of the equation in the following way, | ||
+ | |||
+ | |||
+ | <math>z^{4}+3z^{3}+z^{2}+18z-30=\left( z^{2}+Az+B \right)\left( z^{2}+6 \right)</math>, | ||
+ | |||
+ | where the equation's two other roots are zeros of the unknown factor | ||
+ | <math>z^{2}+Az+B</math>. | ||
+ | |||
+ | We determine the factor | ||
+ | <math>z^{2}+Az+B</math> | ||
+ | by means of a polynomial division (divide both sides by | ||
+ | <math>z^{2}+6</math>): | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z^{2}+Az+B=\frac{z^{4}+3z^{3}+z^{2}+18z-30}{z^{2}+6} \\ | ||
+ | & =\frac{z^{4}+6z^{2}-6z^{2}+3z^{3}+z^{2}+18z-30}{z^{2}+6} \\ | ||
+ | & =\frac{z^{2}\left( z^{2}+6 \right)+3z^{3}-5z^{2}+18z-30}{z^{2}+6} \\ | ||
+ | & =z^{2}+\frac{3z^{3}-5z^{2}+18z-30}{z^{2}+6} \\ | ||
+ | & =z^{2}+\frac{3z^{3}+18z-18z-5z^{2}+18z-30}{z^{2}+6} \\ | ||
+ | & =z^{2}+\frac{3z\left( z^{2}+6 \right)-5z^{2}-30}{z^{2}+6} \\ | ||
+ | & =z^{2}+3z+\frac{-5z^{2}-30}{z^{2}+6} \\ | ||
+ | & =z^{2}+3z+\frac{-5\left( z^{2}+6 \right)}{z^{2}+6} \\ | ||
+ | & =z^{2}+3z-5 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | To obtain the two remaining roots, we need therefore to solve the equation | ||
+ | |||
+ | |||
+ | <math>z^{2}+3z-5=0</math> | ||
+ | |||
+ | |||
+ | We complete the square | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( z+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}-5=0 \\ | ||
+ | & \left( z+\frac{3}{2} \right)^{2}=\frac{29}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | which gives that | ||
+ | <math>z=-\frac{3}{2}\pm \frac{\sqrt{29}}{2}</math>. | ||
+ | |||
+ | The answer is that the equation has the roots | ||
+ | |||
+ | |||
+ | <math>z=-i\sqrt{6},\ z=i\sqrt{6},\ z=-\frac{3}{2}-\frac{\sqrt{29}}{2},\ z=-\frac{3}{2}+\frac{\sqrt{29}}{2}</math> |
Version vom 14:02, 28. Okt. 2008
First, we try to determine the pure imaginary root.
We can write the imaginary root as , where is a real number. If we substitute in , the equation should then be satisfied,
ia
4+3
ia
3+
ia
2+18
ia
−30=0
i.e.
and, if collect together the real and imaginary parts on the left-hand side, we have
a4−a2−30
+a
−3a2+18
i=0
If both sides are to be equal, the left-hand side's real and imaginary parts must be zero,
a4−a2−30=0a
−3a2+18
=0
The other relation gives
6
6
Thus, the equation
6
6
Now we tackle the problem of determining the equation's other two roots. Because we know that the equation has the two roots
i
6
z−i
6
z+i
6
=z2+6
i.e. we can factorize the left-hand side of the equation in the following way,
z2+Az+B
z2+6
where the equation's two other roots are zeros of the unknown factor
We determine the factor
z2+6
+3z3−5z2+18z−30=z2+z2+63z3−5z2+18z−30=z2+z2+63z3+18z−18z−5z2+18z−30=z2+z2+63z
z2+6
−5z2−30=z2+3z+z2+6−5z2−30=z2+3z+z2+6−5
z2+6
=z2+3z−5
To obtain the two remaining roots, we need therefore to solve the equation
We complete the square
z+23
2−
23
2−5=0
z+23
2=429
which gives that
2
29
The answer is that the equation has the roots
6
z=i
6
z=−23−2
29
z=−23+2
29