Processing Math: 76%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[1.1 Introduction to derivatives +[[1.1 Einführung zur Differentialrechnung))
K (Robot: Automated text replacement (-Exercises +Übungen))
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Not selected tab|[[1.1 Einführung zur Differentialrechnung|Theory]]}}
{{Not selected tab|[[1.1 Einführung zur Differentialrechnung|Theory]]}}
-
{{Selected tab|[[1.1 Exercises|Exercises]]}}
+
{{Selected tab|[[1.1 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 13:16, 10. Mär. 2009

       Theory          Übungen      

Exercise 1.1:1

The graph for f(x) is shown in the figure.

a) What are the signs of f(4) and f(1)?
b) For what values of x is f(x)=0?
c) In which interval(s) is f(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figure - The graph of f(x) in exercise 1.1:1

Exercise 1.1:2

Determine the derivative f(x) when

a) f(x)=x23x+1 b) f(x)=cosxsinx c) f(x)=exlnx
d) f(x)=x  e) f(x)=(x21)2 f) f(x)=cos(x+3)

Exercise 1.1:3

A small ball, that is released from a height of h=10m above the ground at time t=0, is at a height h(t)=102982t2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

Exercise 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

Exercise 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).