Processing Math: Done
3.4 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Exercises +Übungen)) |
K (Robot: Automated text replacement (-Exercise +Übung)) |
||
Zeile 7: | Zeile 7: | ||
|} | |} | ||
- | === | + | ===Übung 3.4:1=== |
<div class="ovning"> | <div class="ovning"> | ||
Carry out the following divisions (not all are exact, i.e. have no remainder) | Carry out the following divisions (not all are exact, i.e. have no remainder) | ||
Zeile 25: | Zeile 25: | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}} | ||
- | === | + | ===Übung 3.4:2=== |
<div class="ovning"> | <div class="ovning"> | ||
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots. | The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots. | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}} | ||
- | === | + | ===Übung 3.4:3=== |
<div class="ovning"> | <div class="ovning"> | ||
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation. | The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation. | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}} | ||
- | === | + | ===Übung 3.4:4=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation. | Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation. | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}} | ||
- | === | + | ===Übung 3.4:5=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation. | Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation. | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}} | ||
- | === | + | ===Übung 3.4:6=== |
<div class="ovning"> | <div class="ovning"> | ||
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots. | The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots. | ||
</div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}} | </div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}} | ||
- | === | + | ===Übung 3.4:7=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the polynomial which has the following zeros | Determine the polynomial which has the following zeros |
Version vom 13:24, 10. Mär. 2009
Theory | Übungen |
Übung 3.4:1
Carry out the following divisions (not all are exact, i.e. have no remainder)
a) | b) | | c) | | |
d) | | e) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Übung 3.4:2
The equation
Übung 3.4:3
The equation
Übung 3.4:4
Determine two real numbers
Übung 3.4:5
Determine
Übung 3.4:6
The equation
Übung 3.4:7
Determine the polynomial which has the following zeros
a) | b) | |