Processing Math: 69%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Exercise +Übung))
K (Robot: Automated text replacement (-Theory +Theorie))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Not selected tab|[[3.4 Komplexe Polynome|Theory]]}}
+
{{Not selected tab|[[3.4 Komplexe Polynome|Theorie]]}}
{{Selected tab|[[3.4 Übungen|Übungen]]}}
{{Selected tab|[[3.4 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Version vom 13:28, 10. Mär. 2009

       Theorie          Übungen      

Übung 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) x1x21 b) x2x+1 c) x+ax3+a3
d) x+1x3+x+2 e) x2+3x+1x3+2x2+1

Übung 3.4:2

The equation z33z2+4z2=0 has the root z=1. Determine the other roots.

Übung 3.4:3

The equation z4+2z3+6z2+8z+8=0 has the roots z=2i and z=1i. Solve the equation.

Übung 3.4:4

Determine two real numbers a and b, such that the equation  z3+az+b=0  has the root z=12i. Then solve the equation.

Übung 3.4:5

Determine a and b so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.

Übung 3.4:6

The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.

Übung 3.4:7

Determine the polynomial which has the following zeros

a) \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 b) \displaystyle -1+ i\, and \displaystyle \,-1-i