Processing Math: Done
3.3 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Theory +Theorie)) |
K (Robot: Automated text replacement (-Answer +Antwort)) |
||
Zeile 24: | Zeile 24: | ||
|width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math> | |width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:1|Solution a|Solution 3.3:1a|Solution b|Solution 3.3:1b|Solution c|Solution 3.3:1c|Solution d|Solution 3.3:1d|Solution e|Solution 3.3:1e}} |
===Übung 3.3:2=== | ===Übung 3.3:2=== | ||
Zeile 42: | Zeile 42: | ||
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math> | |width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:2|Solution a|Solution 3.3:2a|Solution b|Solution 3.3:2b|Solution c|Solution 3.3:2c|Solution d|Solution 3.3:2d|Solution e|Solution 3.3:2e}} |
===Übung 3.3:3=== | ===Übung 3.3:3=== | ||
Zeile 58: | Zeile 58: | ||
|width="50%"| <math>iz^2+(2+3i)z-1</math> | |width="50%"| <math>iz^2+(2+3i)z-1</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:3|Solution a|Solution 3.3:3a|Solution b|Solution 3.3:3b|Solution c|Solution 3.3:3c|Solution d|Solution 3.3:3d}} |
===Übung 3.3:4=== | ===Übung 3.3:4=== | ||
Zeile 74: | Zeile 74: | ||
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math> | |width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:4|Solution a|Solution 3.3:4a|Solution b|Solution 3.3:4b|Solution c|Solution 3.3:4c|Solution d|Solution 3.3:4d}} |
===Übung 3.3:5=== | ===Übung 3.3:5=== | ||
Zeile 90: | Zeile 90: | ||
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math> | |width="50%"| <math>(4+i)z^2+(1-21i)z=17</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:5|Solution a|Solution 3.3:5a|Solution b|Solution 3.3:5b|Solution c|Solution 3.3:5c|Solution d|Solution 3.3:5d}} |
===Übung 3.3:6=== | ===Übung 3.3:6=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>. | Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Antwort|Antwort 3.3:6|Solution|Solution 3.3:6}} |
Version vom 13:31, 10. Mär. 2009
Theorie | Übungen |
Übung 3.3:1
Write the following number in the form
a) | b) | ![]() ![]() ![]() | |
c) | ![]() | d) | ![]() ![]() ![]() |
e) | ![]() ![]() |
Antwort | Solution a | Solution b | Solution c | Solution d | Solution e
Übung 3.3:2
Solve the equations
a) | b) | | c) | | |
d) | | e) | ![]() ![]() |
Antwort | Solution a | Solution b | Solution c | Solution d | Solution e
Übung 3.3:3
Complete the square of the following expressions
a) | b) | | |
c) | | d) | |
Antwort | Solution a | Solution b | Solution c | Solution d
Übung 3.3:4
Solve the equations
a) | b) | | |
c) | | d) | |
Antwort | Solution a | Solution b | Solution c | Solution d
Übung 3.3:5
Solve the equations
a) | b) | | |
c) | | d) | |
Antwort | Solution a | Solution b | Solution c | Solution d
Übung 3.3:6
Determine the solution to 8