Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Theory +Theorie))
K (Robot: Automated text replacement (-Answer +Antwort))
Zeile 23: Zeile 23:
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}}
===Übung 3.4:2===
===Übung 3.4:2===
<div class="ovning">
<div class="ovning">
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:2|Solution|Solution 3.4:2}}
===Übung 3.4:3===
===Übung 3.4:3===
<div class="ovning">
<div class="ovning">
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:3|Solution|Solution 3.4:3}}
===Übung 3.4:4===
===Übung 3.4:4===
<div class="ovning">
<div class="ovning">
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:4|Solution|Solution 3.4:4}}
===Übung 3.4:5===
===Übung 3.4:5===
<div class="ovning">
<div class="ovning">
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:5|Solution|Solution 3.4:5}}
===Übung 3.4:6===
===Übung 3.4:6===
<div class="ovning">
<div class="ovning">
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots.
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:6|Solution|Solution 3.4:6}}
===Übung 3.4:7===
===Übung 3.4:7===
Zeile 59: Zeile 59:
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
|width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.4:7|Solution a|Solution 3.4:7a|Solution b|Solution 3.4:7b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:7|Solution a|Solution 3.4:7a|Solution b|Solution 3.4:7b}}

Version vom 13:32, 10. Mär. 2009

       Theorie          Übungen      

Übung 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) x1x21 b) x2x+1 c) x+ax3+a3
d) x+1x3+x+2 e) x2+3x+1x3+2x2+1

Übung 3.4:2

The equation z33z2+4z2=0 has the root z=1. Determine the other roots.

Übung 3.4:3

The equation z4+2z3+6z2+8z+8=0 has the roots z=2i and z=1i. Solve the equation.

Übung 3.4:4

Determine two real numbers a and b, such that the equation  z3+az+b=0  has the root z=12i. Then solve the equation.

Übung 3.4:5

Determine a and b so that the equation  z46z2+az+b=0  has a triple root. Then solve the equation.

Übung 3.4:6

The equation  z4+3z3+z2+18z30=0  has a pure imaginary root. Determine all the roots.

Übung 3.4:7

Determine the polynomial which has the following zeros

a) 1, 2 and 4 b) 1+i and 1i