Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 1.2:4a moved to Lösung 1.2:4a: Robot: moved page)

Version vom 10:07, 11. Mär. 2009

We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives

ddxx1x2=1x22(x)1x2x1x2=1x211x2x1x2.

We determine the derivative 1x2  by using the chain rule

=1x21x2x121x21x2=1x21x2x121x2(2x).

We simplify the result as far as possible, so as to make the second differentiation easier,

=1x21x2+x21x2=1x21x21x22+x21x2=1x21x21x2+x2=1(1x2)32.

The second derivative is

d2dx2x1x2=ddx1(1x2)32=ddx1x232=231x23211x2=231x252(2x)=3x1x252=3x1x252.