Lösung 1.3:7
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (Solution 1.3:7 moved to Lösung 1.3:7: Robot: moved page) |
Version vom 10:13, 11. Mär. 2009
The whole procedure can be illustrated by the figure below:
Because it is the cornet's volume we want to maximise, it is appropriate to start by introducing some notation for the dimensions of the cornet.
With these dimensions, the volume of the cornet will be the same as that of a cone,
![]() ![]() |
To go further, we now need to express the radius
When we cut out a circular sector of angle −
)R
On the other hand, the cornet's upper circular edge has a circumference
r
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We have thus managed to express the radius
In order to obtain the height
This means that
\displaystyle \begin{align}
h &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\,R\Bigr)^2}\\[5pt] &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2R^2}\\[5pt] &= R\sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,\textrm{.} \end{align} |
Hence, we have expressed \displaystyle r and \displaystyle h in terms of the angle \displaystyle \alpha and the radius \displaystyle R, and we get that the volume of the cornet is given by
\displaystyle \begin{align}
V &= \frac{1}{3}\pi r^2 h\\[5pt] &= \frac{1}{3}\pi \Bigl(\frac{2\pi-\alpha}{2\pi}R\Bigr)^2 R\sqrt{1-\Bigl( \frac{2\pi-\alpha}{2\pi}\Bigr)^2}\\[5pt] &= \frac{1}{3}\pi R^3\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2 \sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,\textrm{.} \end{align} |
At last, we can mathematically formulate the problem:
- Maximise \displaystyle V(\alpha) = \frac{1}{3}\pi R^3 \Bigl(\frac{2\pi-\alpha}{2\pi} \Bigr)^2\sqrt{1-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2}\,, where \displaystyle 0\le \alpha \le 2\pi\,.
Before we start to try and solve this problem, we can observe that the variable \displaystyle \alpha occurs in the volume function only in the combination \displaystyle (2\pi-\alpha)/2\pi, so that we may as well choose to maximise the volume with respect to the variable \displaystyle x=(2\pi-\alpha)/2\pi to obtain, as far as the formula is concerned, the somewhat easier problem:
- Maximise \displaystyle V(x) = \frac{1}{3}\pi R^3x^2\sqrt{1-x^2}\,, when \displaystyle 0\le x\le 1\,.
When either \displaystyle x=0 or \displaystyle x=1, the volume is zero and since the volume function is a differentiable function of \displaystyle x (apart from at \displaystyle x=1), the volume must be a maximum at a critical point of the function.
We differentiate,
\displaystyle V'(x) = \frac{1}{3}\pi R^3\cdot 2x\cdot \sqrt{1-x^2} + \frac{1}{3}\pi R^3x^2\cdot\frac{1}{2\sqrt{1-x^2}}\cdot (-2x)\,, |
and begin simplifying this expression. The strategy is to try to take out as many factors as possible, so that we see more easily when some factor, and hence the derivative, becomes zero,
\displaystyle \begin{align}
V'(x) &= \frac{2}{3}\pi R^3x\sqrt{1-x^2} - \frac{1}{3}\pi R^3x^3\frac{1}{\sqrt{1-x^2}}\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}\bigl[ 2(1-x^2)-x^2\bigr]\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}(2-3x^2)\,\textrm{.} \end{align} |
The derivative is zero when \displaystyle x=0 (which is an endpoint) or when \displaystyle 2-3x^2=0, i.e. \displaystyle x=\sqrt{2/3}\,. (The point \displaystyle x=-\sqrt{2/3} lies outside \displaystyle 0\le x\le 1.)
With the help of a table of the sign of the factors,
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle x | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle \sqrt{1-x^2} | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle 0 |
\displaystyle 2-3x^2 | \displaystyle + | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle - |
we can write down a table of the sign of the derivative itself,
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle V'(x) | \displaystyle 0 | \displaystyle + | \displaystyle 0 | \displaystyle - | |
\displaystyle V(x) | \displaystyle 0 | \displaystyle \nearrow | \displaystyle \tfrac{4}{9\sqrt{3}}\pi R^3 | \displaystyle \searrow | \displaystyle 0 |
and see that \displaystyle x=\sqrt{2/3} is a global maximum. The value \displaystyle x = \sqrt{2/3} corresponds to the \displaystyle \alpha-value
\displaystyle \sqrt{\frac{2}{3}}=\frac{2\pi-\alpha }{2\pi}\quad \Leftrightarrow\quad \alpha = 2\pi \bigl(1-\sqrt{2/3}\,\bigr)\ \text{radians.} |