Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 2.1:2b moved to Lösung 2.1:2b: Robot: moved page)

Version vom 10:15, 11. Mär. 2009

There is no ready made standard formula for a primitive function to our integrand, but if we expand

21(x2)(x+1)dx=21(x2+x2x2)dx=21(x2x2)dx

and write the last integral as

21(x2x12x0)dx 

we see that the integrand consists of three terms of the type xn and we can directly write down a primitive function,

21(x2x12x0)dx= 3x32x22x1 21=3232222123(1)32(1)221(1)=382443121+2=6161224+2+312=627=29.