Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 2.1:5a moved to Lösung 2.1:5a: Robot: moved page)

Version vom 10:19, 11. Mär. 2009

If we multiply top and bottom of the fraction by the conjugate expression x+9+x  then the formula for the difference of two squares gives that denominator's root is squared away,

1x+9x=1x+9xx+9+xx+9+x=x+9+xx+92x2=x+9xx+9+x=9x+9+x.

Thus,

dxx+9x=91x+9+xdx. 

If we write the square roots in power form,

91(x+9)12+x12dx 

we see that we have a standard integral and can write down the primitive functions directly,

91(x+9)12+x12dx=9121+1(x+9)12+1+21+1x12+1+C=9132(x+9)32+32x32+C=9132(x+9)32+32x32+C=227(x+9)32+227x32+C

where C is an arbitrary constant.

This can also be written with square roots as

227(x+9)x+9+227xx+C. 


Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,

ddx227(x+9)32+227x32+C=22723(x+9)321+22723x321+0=91(x+9)12+91x12.