Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.4:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 3.4:1d moved to Lösung 3.4:1d: Robot: moved page)

Version vom 10:51, 11. Mär. 2009

We start by adding and taking away x2 in the numerator, so that, in combination with x3, we obtain the expression x3+x2=x2(x+1) which can be simplified with the denominator x+1,

x+1x3+x+2=x+1x3+x2x2+x+2=x+1x3+x2+x+1x2+x+2=x+1x2(x+1)+x+1x2+x+2=x2+x+1x2+x+2.

The term x2 in the remaining quotient needs to complemented with x so that we get x2x=x(x+1), which is divisible by x+1,

x2+x+1x2+x+2=x2+x+1x2x+x+x+2=x2+x+1x2x+x+12x+2=x2+x+1x(x+1)+x+12x+2=x2x+x+12x+2.

The last quotient divides perfectly and we obtain

x2x+x+12x+2=x2x+2.

A quick check of whether

x+1x3+x+2=x2x+2.

is the correct answer is to investigate whether

x3+x+2=(x2x+2)(x+1)

holds. If we expand the right-hand side, we see that the relation really does hold

(x2x+2)(x+1)=x3+x2x2x+2x+2=x3+x+2.