Lösung 3.4:6
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (Solution 3.4:6 moved to Lösung 3.4:6: Robot: moved page) |
Version vom 10:53, 11. Mär. 2009
First, we try to determine the pure imaginary root.
We can write the imaginary root as
![]() |
i.e.
and, if collect together the real and imaginary parts on the left-hand side, we have
If both sides are to be equal, the left-hand side's real and imaginary parts must be zero,
![]() ![]() |
The other relation gives 6
6
Thus, the equation 6
6
Now we tackle the problem of determining the equation's other two roots. Because we know that the equation has the two roots i
6
![]() ![]() ![]() |
i.e. we can factorize the left-hand side of the equation in the following way,
![]() |
where the equation's two other roots are zeros of the unknown factor \displaystyle z^{2}+Az+B.
We determine the factor \displaystyle z^2+Az+B by means of a polynomial division (divide both sides by \displaystyle z^2+6),
\displaystyle \begin{align}
z^2+Az+B &= \frac{z^4+3z^3+z^2+18z-30}{z^2+6}\\[5pt] &= \frac{z^4+6z^2-6z^2+3z^3+z^2+18z-30}{z^2+6}\\[5pt] &= \frac{z^2(z^2+6)+3z^3-5z^2+18z-30}{z^2+6}\\[5pt] &= z^2 + \frac{3z^3-5z^2+18z-30}{z^2+6}\\[5pt] &= z^2 + \frac{3z^3+18z-18z-5z^2+18z-30}{z^2+6}\\[5pt] &= z^2 + \frac{3z(z^2+6)-5z^2-30}{z^2+6}\\[5pt] &= z^2 + 3z + \frac{-5z^2-30}{z^2+6}\\[5pt] &= z^2 + 3z + \frac{-5(z^2+6)}{z^2+6}\\[5pt] &= z^2 + 3z - 5\,\textrm{.} \end{align} |
To obtain the two remaining roots, we need therefore to solve the equation
\displaystyle z^2+3z-5 = 0\,\textrm{.} |
We complete the square
\displaystyle \begin{align}
\Bigl(z+\frac{3}{2}\Bigr)^2 - \Bigl(\frac{3}{2}\Bigr)^2 - 5 &= 0\,,\\[5pt] \Bigl(z+\frac{3}{2}\Bigr)^2 &= \frac{29}{4}\,, \end{align} |
which gives that \displaystyle z=-\frac{3}{2}\pm \frac{\sqrt{29}}{2}.
The answer is that the equation has the roots
\displaystyle z=-i\sqrt{6}, \displaystyle \quad z=i\sqrt{6}, \displaystyle \quad z=-\frac{3}{2}-\frac{\sqrt{29}}{2}, \displaystyle \quad z=-\frac{3}{2}+\frac{\sqrt{29}}{2}\,\textrm{.} |