Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.4:7a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 3.4:7a moved to Lösung 3.4:7a: Robot: moved page)

Version vom 10:53, 11. Mär. 2009

There exists a simple relation between a zero and the polynomial's factorization: z=a is a zero if and only if the polynomial contains the factor (za). (This is the meaning of the factor theorem.)

If we are to have a polynomial with zeros at 1, 2 and 4, the polynomial must therefore contain the factors (z1), (z2) and (z4). For example,

(z1)(z2)(z4)=z37z2+14z8.


Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.